mirror of
https://github.com/open-webui/open-webui
synced 2025-04-05 05:10:46 +00:00
Avoid multiple data fetching
This commit is contained in:
parent
4547453141
commit
04bf9ddab2
@ -1,9 +1,7 @@
|
||||
import logging
|
||||
import os
|
||||
import uuid
|
||||
from typing import Optional, Union
|
||||
|
||||
import asyncio
|
||||
import requests
|
||||
import hashlib
|
||||
|
||||
@ -12,10 +10,8 @@ from langchain.retrievers import ContextualCompressionRetriever, EnsembleRetriev
|
||||
from langchain_community.retrievers import BM25Retriever
|
||||
from langchain_core.documents import Document
|
||||
|
||||
|
||||
from open_webui.config import VECTOR_DB
|
||||
from open_webui.retrieval.vector.connector import VECTOR_DB_CLIENT
|
||||
from open_webui.utils.misc import get_last_user_message, calculate_sha256_string
|
||||
|
||||
from open_webui.models.users import UserModel
|
||||
from open_webui.models.files import Files
|
||||
@ -102,6 +98,7 @@ def get_doc(collection_name: str, user: UserModel = None):
|
||||
|
||||
def query_doc_with_hybrid_search(
|
||||
collection_name: str,
|
||||
collection_data,
|
||||
query: str,
|
||||
embedding_function,
|
||||
k: int,
|
||||
@ -110,11 +107,9 @@ def query_doc_with_hybrid_search(
|
||||
r: float,
|
||||
) -> dict:
|
||||
try:
|
||||
result = VECTOR_DB_CLIENT.get(collection_name=collection_name)
|
||||
|
||||
bm25_retriever = BM25Retriever.from_texts(
|
||||
texts=result.documents[0],
|
||||
metadatas=result.metadatas[0],
|
||||
texts=collection_data.documents[0],
|
||||
metadatas=collection_data.metadatas[0],
|
||||
)
|
||||
bm25_retriever.k = k
|
||||
|
||||
@ -140,9 +135,9 @@ def query_doc_with_hybrid_search(
|
||||
|
||||
result = compression_retriever.invoke(query)
|
||||
|
||||
distances = [d.metadata.get("score") for d in result]
|
||||
documents = [d.page_content for d in result]
|
||||
metadatas = [d.metadata for d in result]
|
||||
distances = [d.metadata.get("score") for d in collection_data]
|
||||
documents = [d.page_content for d in collection_data]
|
||||
metadatas = [d.metadata for d in collection_data]
|
||||
|
||||
# retrieve only min(k, k_reranker) items, sort and cut by distance if k < k_reranker
|
||||
if k < k_reranker:
|
||||
@ -151,7 +146,7 @@ def query_doc_with_hybrid_search(
|
||||
)
|
||||
sorted_items = sorted_items[:k]
|
||||
distances, documents, metadatas = map(list, zip(*sorted_items))
|
||||
result = {
|
||||
collection_data = {
|
||||
"distances": [distances],
|
||||
"documents": [documents],
|
||||
"metadatas": [metadatas],
|
||||
@ -159,9 +154,9 @@ def query_doc_with_hybrid_search(
|
||||
|
||||
log.info(
|
||||
"query_doc_with_hybrid_search:result "
|
||||
+ f'{result["metadatas"]} {result["distances"]}'
|
||||
+ f'{collection_data["metadatas"]} {collection_data["distances"]}'
|
||||
)
|
||||
return result
|
||||
return collection_data
|
||||
except Exception as e:
|
||||
raise e
|
||||
|
||||
@ -282,11 +277,22 @@ def query_collection_with_hybrid_search(
|
||||
) -> dict:
|
||||
results = []
|
||||
error = False
|
||||
# Fetch collection data once per collection sequentially
|
||||
# Avoid fetching the same data multiple times later
|
||||
collection_data = {}
|
||||
for collection_name in collection_names:
|
||||
try:
|
||||
collection_data[collection_name] = VECTOR_DB_CLIENT.get(collection_name=collection_name)
|
||||
except Exception as e:
|
||||
log.exception(f"Failed to fetch collection {collection_name}: {e}")
|
||||
collection_data[collection_name] = None
|
||||
|
||||
for collection_name in collection_names:
|
||||
try:
|
||||
for query in queries:
|
||||
result = query_doc_with_hybrid_search(
|
||||
collection_name=collection_name,
|
||||
collection_data=collection_data[collection_name],
|
||||
query=query,
|
||||
embedding_function=embedding_function,
|
||||
k=k,
|
||||
|
Loading…
Reference in New Issue
Block a user