open-webui/Dockerfile

119 lines
4.5 KiB
Docker
Raw Normal View History

2023-10-08 22:38:42 +00:00
# syntax=docker/dockerfile:1
# Initialize device type args
2024-03-22 08:55:46 +00:00
# use build args in the docker build commmand with --build-arg="BUILDARG=true"
ARG USE_CUDA=false
2024-04-02 12:47:52 +00:00
ARG USE_OLLAMA=false
# Tested with cu117 for CUDA 11 and cu121 for CUDA 12 (default)
ARG USE_CUDA_VER=cu121
# any sentence transformer model; models to use can be found at https://huggingface.co/models?library=sentence-transformers
# Leaderboard: https://huggingface.co/spaces/mteb/leaderboard
# for better performance and multilangauge support use "intfloat/multilingual-e5-large" (~2.5GB) or "intfloat/multilingual-e5-base" (~1.5GB)
# IMPORTANT: If you change the default model (all-MiniLM-L6-v2) and vice versa, you aren't able to use RAG Chat with your previous documents loaded in the WebUI! You need to re-embed them.
ARG USE_EMBEDDING_MODEL=all-MiniLM-L6-v2
2023-10-08 22:38:42 +00:00
2024-03-14 10:18:27 +00:00
######## WebUI frontend ########
2024-03-16 11:43:48 +00:00
FROM node:21-alpine3.19 as build
2023-11-15 00:28:51 +00:00
WORKDIR /app
COPY package.json package-lock.json ./
RUN npm ci
COPY . .
RUN npm run build
2023-10-08 22:38:42 +00:00
2024-03-14 10:18:27 +00:00
######## WebUI backend ########
2024-01-07 16:28:35 +00:00
FROM python:3.11-slim-bookworm as base
2023-11-15 00:28:51 +00:00
# Use args
ARG USE_CUDA
2024-04-02 12:47:52 +00:00
ARG USE_OLLAMA
ARG USE_CUDA_VER
ARG USE_EMBEDDING_MODEL
2024-03-14 10:18:27 +00:00
## Basis ##
ENV ENV=prod \
PORT=8080 \
2024-03-22 11:48:48 +00:00
# pass build args to the build
2024-04-02 12:47:52 +00:00
USE_OLLAMA_DOCKER=${USE_OLLAMA} \
USE_CUDA_DOCKER=${USE_CUDA} \
USE_CUDA_DOCKER_VER=${USE_CUDA_VER} \
USE_EMBEDDING_MODEL_DOCKER=${USE_EMBEDDING_MODEL}
2024-01-05 02:55:15 +00:00
2024-03-14 10:18:27 +00:00
## Basis URL Config ##
ENV OLLAMA_BASE_URL="/ollama" \
OPENAI_API_BASE_URL=""
2024-01-05 02:55:15 +00:00
2024-03-14 10:18:27 +00:00
## API Key and Security Config ##
ENV OPENAI_API_KEY="" \
WEBUI_SECRET_KEY="" \
SCARF_NO_ANALYTICS=true \
DO_NOT_TRACK=true
2023-11-15 00:28:51 +00:00
2024-04-02 12:47:52 +00:00
#### Other models #########################################################
## whisper TTS model settings ##
2024-03-14 10:18:27 +00:00
ENV WHISPER_MODEL="base" \
WHISPER_MODEL_DIR="/app/backend/data/cache/whisper/models"
2024-04-02 12:47:52 +00:00
## RAG Embedding model settings ##
ENV RAG_EMBEDDING_MODEL="$USE_EMBEDDING_MODEL_DOCKER" \
2024-03-14 10:18:27 +00:00
RAG_EMBEDDING_MODEL_DIR="/app/backend/data/cache/embedding/models" \
2024-04-02 12:47:52 +00:00
SENTENCE_TRANSFORMERS_HOME="/app/backend/data/cache/embedding/models"
#### Other models ##########################################################
2023-11-15 00:28:51 +00:00
WORKDIR /app/backend
# install python dependencies
2023-11-15 00:28:51 +00:00
COPY ./backend/requirements.txt ./requirements.txt
2024-01-08 05:22:37 +00:00
RUN if [ "$USE_CUDA" = "true" ]; then \
2024-04-02 12:47:52 +00:00
# If you use CUDA the whisper and embedding modell will be downloaded on first use
pip3 install torch torchvision torchaudio --index-url https://download.pytorch.org/whl/$USE_CUDA_DOCKER_VER --no-cache-dir && \
pip3 install -r requirements.txt --no-cache-dir && \
2024-04-02 12:47:52 +00:00
python -c "import os; from faster_whisper import WhisperModel; WhisperModel(os.environ['WHISPER_MODEL'], device='cpu', compute_type='int8', download_root=os.environ['WHISPER_MODEL_DIR'])"; \
2024-03-18 16:08:34 +00:00
else \
pip3 install torch torchvision torchaudio --index-url https://download.pytorch.org/whl/cpu --no-cache-dir && \
pip3 install -r requirements.txt --no-cache-dir && \
python -c "import os; from faster_whisper import WhisperModel; WhisperModel(os.environ['WHISPER_MODEL'], device='cpu', compute_type='int8', download_root=os.environ['WHISPER_MODEL_DIR'])" && \
2024-03-22 11:48:48 +00:00
python -c "import os; from chromadb.utils import embedding_functions; sentence_transformer_ef = embedding_functions.SentenceTransformerEmbeddingFunction(model_name=os.environ['RAG_EMBEDDING_MODEL'], device='cpu')"; \
2024-03-18 16:08:34 +00:00
fi
2024-04-02 12:47:52 +00:00
RUN if [ "$USE_OLLAMA" = "true" ]; then \
apt-get update && \
# Install pandoc and netcat
apt-get install -y --no-install-recommends pandoc netcat-openbsd && \
# for RAG OCR
apt-get install -y --no-install-recommends ffmpeg libsm6 libxext6 && \
# install helper tools
apt-get install -y --no-install-recommends curl && \
# install ollama
curl -fsSL https://ollama.com/install.sh | sh && \
# cleanup
rm -rf /var/lib/apt/lists/*; \
else \
apt-get update && \
# Install pandoc and netcat
apt-get install -y --no-install-recommends pandoc netcat-openbsd && \
# for RAG OCR
apt-get install -y --no-install-recommends ffmpeg libsm6 libxext6 && \
# cleanup
rm -rf /var/lib/apt/lists/*; \
fi
2024-03-07 02:49:35 +00:00
# copy embedding weight from build
2024-03-14 10:18:27 +00:00
# RUN mkdir -p /root/.cache/chroma/onnx_models/all-MiniLM-L6-v2
# COPY --from=build /app/onnx /root/.cache/chroma/onnx_models/all-MiniLM-L6-v2/onnx
# copy built frontend files
COPY --from=build /app/build /app/build
2024-02-23 08:54:22 +00:00
COPY --from=build /app/CHANGELOG.md /app/CHANGELOG.md
COPY --from=build /app/package.json /app/package.json
# copy backend files
2023-11-15 00:28:51 +00:00
COPY ./backend .
2024-03-16 19:11:09 +00:00
EXPOSE 8080
CMD [ "bash", "start.sh"]