2024-03-09 06:34:47 +00:00
|
|
|
import re
|
2024-03-09 03:26:39 +00:00
|
|
|
from typing import List
|
|
|
|
|
|
|
|
from config import CHROMA_CLIENT
|
|
|
|
|
|
|
|
|
|
|
|
def query_doc(collection_name: str, query: str, k: int, embedding_function):
|
|
|
|
try:
|
|
|
|
# if you use docker use the model from the environment variable
|
|
|
|
collection = CHROMA_CLIENT.get_collection(
|
|
|
|
name=collection_name,
|
|
|
|
embedding_function=embedding_function,
|
|
|
|
)
|
|
|
|
result = collection.query(
|
|
|
|
query_texts=[query],
|
|
|
|
n_results=k,
|
|
|
|
)
|
|
|
|
return result
|
|
|
|
except Exception as e:
|
|
|
|
raise e
|
|
|
|
|
|
|
|
|
|
|
|
def merge_and_sort_query_results(query_results, k):
|
|
|
|
# Initialize lists to store combined data
|
|
|
|
combined_ids = []
|
|
|
|
combined_distances = []
|
|
|
|
combined_metadatas = []
|
|
|
|
combined_documents = []
|
|
|
|
|
|
|
|
# Combine data from each dictionary
|
|
|
|
for data in query_results:
|
|
|
|
combined_ids.extend(data["ids"][0])
|
|
|
|
combined_distances.extend(data["distances"][0])
|
|
|
|
combined_metadatas.extend(data["metadatas"][0])
|
|
|
|
combined_documents.extend(data["documents"][0])
|
|
|
|
|
|
|
|
# Create a list of tuples (distance, id, metadata, document)
|
|
|
|
combined = list(
|
|
|
|
zip(combined_distances, combined_ids, combined_metadatas, combined_documents)
|
|
|
|
)
|
|
|
|
|
|
|
|
# Sort the list based on distances
|
|
|
|
combined.sort(key=lambda x: x[0])
|
|
|
|
|
|
|
|
# Unzip the sorted list
|
|
|
|
sorted_distances, sorted_ids, sorted_metadatas, sorted_documents = zip(*combined)
|
|
|
|
|
|
|
|
# Slicing the lists to include only k elements
|
|
|
|
sorted_distances = list(sorted_distances)[:k]
|
|
|
|
sorted_ids = list(sorted_ids)[:k]
|
|
|
|
sorted_metadatas = list(sorted_metadatas)[:k]
|
|
|
|
sorted_documents = list(sorted_documents)[:k]
|
|
|
|
|
|
|
|
# Create the output dictionary
|
|
|
|
merged_query_results = {
|
|
|
|
"ids": [sorted_ids],
|
|
|
|
"distances": [sorted_distances],
|
|
|
|
"metadatas": [sorted_metadatas],
|
|
|
|
"documents": [sorted_documents],
|
|
|
|
"embeddings": None,
|
|
|
|
"uris": None,
|
|
|
|
"data": None,
|
|
|
|
}
|
|
|
|
|
|
|
|
return merged_query_results
|
|
|
|
|
|
|
|
|
|
|
|
def query_collection(
|
|
|
|
collection_names: List[str], query: str, k: int, embedding_function
|
|
|
|
):
|
|
|
|
|
|
|
|
results = []
|
|
|
|
|
|
|
|
for collection_name in collection_names:
|
|
|
|
try:
|
|
|
|
# if you use docker use the model from the environment variable
|
|
|
|
collection = CHROMA_CLIENT.get_collection(
|
|
|
|
name=collection_name,
|
|
|
|
embedding_function=embedding_function,
|
|
|
|
)
|
|
|
|
|
|
|
|
result = collection.query(
|
|
|
|
query_texts=[query],
|
|
|
|
n_results=k,
|
|
|
|
)
|
|
|
|
results.append(result)
|
|
|
|
except:
|
|
|
|
pass
|
|
|
|
|
|
|
|
return merge_and_sort_query_results(results, k)
|
2024-03-09 06:34:47 +00:00
|
|
|
|
|
|
|
|
|
|
|
def rag_template(template: str, context: str, query: str):
|
|
|
|
template = re.sub(r"\[context\]", context, template)
|
|
|
|
template = re.sub(r"\[query\]", query, template)
|
|
|
|
|
|
|
|
return template
|