open-webui/backend/apps/rag/main.py

899 lines
26 KiB
Python
Raw Normal View History

2024-01-07 07:40:51 +00:00
from fastapi import (
FastAPI,
Depends,
HTTPException,
status,
UploadFile,
File,
Form,
)
2024-01-07 06:07:20 +00:00
from fastapi.middleware.cors import CORSMiddleware
2024-04-03 15:19:18 +00:00
import os, shutil, logging, re
2024-02-18 05:06:08 +00:00
from pathlib import Path
2024-02-01 21:35:41 +00:00
from typing import List
2024-01-07 06:07:20 +00:00
2024-04-09 14:38:40 +00:00
from chromadb.utils.batch_utils import create_batches
2024-01-07 06:07:20 +00:00
2024-01-07 17:05:52 +00:00
from langchain_community.document_loaders import (
WebBaseLoader,
TextLoader,
PyPDFLoader,
CSVLoader,
BSHTMLLoader,
2024-01-07 21:56:01 +00:00
Docx2txtLoader,
2024-01-13 13:46:56 +00:00
UnstructuredEPubLoader,
2024-01-09 23:24:53 +00:00
UnstructuredWordDocumentLoader,
UnstructuredMarkdownLoader,
UnstructuredXMLLoader,
2024-01-19 17:48:04 +00:00
UnstructuredRSTLoader,
2024-01-23 21:03:22 +00:00
UnstructuredExcelLoader,
2024-05-02 00:17:00 +00:00
YoutubeLoader,
2024-01-07 17:05:52 +00:00
)
2024-01-07 06:59:22 +00:00
from langchain.text_splitter import RecursiveCharacterTextSplitter
import validators
import urllib.parse
import socket
2024-01-07 06:59:22 +00:00
from pydantic import BaseModel
from typing import Optional
2024-02-18 05:06:08 +00:00
import mimetypes
2024-01-07 06:59:22 +00:00
import uuid
2024-02-19 19:05:45 +00:00
import json
import sentence_transformers
2024-01-07 06:59:22 +00:00
2024-02-18 05:06:08 +00:00
from apps.web.models.documents import (
Documents,
DocumentForm,
DocumentResponse,
)
2024-02-18 08:17:43 +00:00
2024-04-14 21:55:00 +00:00
from apps.rag.utils import (
2024-04-25 12:49:59 +00:00
get_model_path,
2024-04-27 19:38:50 +00:00
get_embedding_function,
query_doc,
query_doc_with_hybrid_search,
query_collection,
query_collection_with_hybrid_search,
2024-04-14 21:55:00 +00:00
)
2024-03-09 03:26:39 +00:00
2024-02-18 05:06:08 +00:00
from utils.misc import (
calculate_sha256,
calculate_sha256_string,
sanitize_filename,
extract_folders_after_data_docs,
)
from utils.utils import get_current_user, get_admin_user
2024-04-25 12:49:59 +00:00
2024-02-18 05:06:08 +00:00
from config import (
SRC_LOG_LEVELS,
2024-02-18 05:06:08 +00:00
UPLOAD_DIR,
DOCS_DIR,
RAG_TOP_K,
RAG_RELEVANCE_THRESHOLD,
2024-04-14 21:55:00 +00:00
RAG_EMBEDDING_ENGINE,
2024-02-18 19:16:10 +00:00
RAG_EMBEDDING_MODEL,
2024-04-25 12:49:59 +00:00
RAG_EMBEDDING_MODEL_AUTO_UPDATE,
RAG_EMBEDDING_MODEL_TRUST_REMOTE_CODE,
2024-04-26 18:41:39 +00:00
ENABLE_RAG_HYBRID_SEARCH,
ENABLE_RAG_WEB_LOADER_SSL_VERIFICATION,
2024-04-22 20:49:58 +00:00
RAG_RERANKING_MODEL,
PDF_EXTRACT_IMAGES,
2024-04-25 12:49:59 +00:00
RAG_RERANKING_MODEL_AUTO_UPDATE,
2024-04-22 20:49:58 +00:00
RAG_RERANKING_MODEL_TRUST_REMOTE_CODE,
2024-04-20 20:15:59 +00:00
RAG_OPENAI_API_BASE_URL,
RAG_OPENAI_API_KEY,
DEVICE_TYPE,
2024-02-18 05:06:08 +00:00
CHROMA_CLIENT,
CHUNK_SIZE,
CHUNK_OVERLAP,
2024-02-18 06:41:03 +00:00
RAG_TEMPLATE,
ENABLE_RAG_LOCAL_WEB_FETCH,
2024-02-18 05:06:08 +00:00
)
2024-01-07 06:59:22 +00:00
from constants import ERROR_MESSAGES
log = logging.getLogger(__name__)
log.setLevel(SRC_LOG_LEVELS["RAG"])
2024-01-07 06:07:20 +00:00
app = FastAPI()
app.state.TOP_K = RAG_TOP_K
app.state.RELEVANCE_THRESHOLD = RAG_RELEVANCE_THRESHOLD
2024-04-26 18:41:39 +00:00
app.state.ENABLE_RAG_HYBRID_SEARCH = ENABLE_RAG_HYBRID_SEARCH
app.state.ENABLE_RAG_WEB_LOADER_SSL_VERIFICATION = (
ENABLE_RAG_WEB_LOADER_SSL_VERIFICATION
)
2024-04-25 22:31:21 +00:00
2024-02-18 06:29:52 +00:00
app.state.CHUNK_SIZE = CHUNK_SIZE
app.state.CHUNK_OVERLAP = CHUNK_OVERLAP
2024-04-10 07:33:45 +00:00
2024-04-14 21:55:00 +00:00
app.state.RAG_EMBEDDING_ENGINE = RAG_EMBEDDING_ENGINE
2024-02-19 19:05:45 +00:00
app.state.RAG_EMBEDDING_MODEL = RAG_EMBEDDING_MODEL
2024-04-22 20:49:58 +00:00
app.state.RAG_RERANKING_MODEL = RAG_RERANKING_MODEL
2024-04-14 21:55:00 +00:00
app.state.RAG_TEMPLATE = RAG_TEMPLATE
2024-04-10 07:33:45 +00:00
2024-04-20 20:21:52 +00:00
app.state.OPENAI_API_BASE_URL = RAG_OPENAI_API_BASE_URL
app.state.OPENAI_API_KEY = RAG_OPENAI_API_KEY
2024-04-10 07:33:45 +00:00
app.state.PDF_EXTRACT_IMAGES = PDF_EXTRACT_IMAGES
2024-04-14 21:55:00 +00:00
2024-04-22 20:49:58 +00:00
2024-04-25 12:49:59 +00:00
def update_embedding_model(
embedding_model: str,
update_model: bool = False,
):
if embedding_model and app.state.RAG_EMBEDDING_ENGINE == "":
app.state.sentence_transformer_ef = sentence_transformers.SentenceTransformer(
get_model_path(embedding_model, update_model),
device=DEVICE_TYPE,
trust_remote_code=RAG_EMBEDDING_MODEL_TRUST_REMOTE_CODE,
)
else:
app.state.sentence_transformer_ef = None
def update_reranking_model(
reranking_model: str,
update_model: bool = False,
):
if reranking_model:
app.state.sentence_transformer_rf = sentence_transformers.CrossEncoder(
get_model_path(reranking_model, update_model),
device=DEVICE_TYPE,
trust_remote_code=RAG_RERANKING_MODEL_TRUST_REMOTE_CODE,
)
else:
app.state.sentence_transformer_rf = None
update_embedding_model(
app.state.RAG_EMBEDDING_MODEL,
RAG_EMBEDDING_MODEL_AUTO_UPDATE,
)
update_reranking_model(
app.state.RAG_RERANKING_MODEL,
RAG_RERANKING_MODEL_AUTO_UPDATE,
)
2024-02-18 06:29:52 +00:00
2024-04-27 19:38:50 +00:00
app.state.EMBEDDING_FUNCTION = get_embedding_function(
app.state.RAG_EMBEDDING_ENGINE,
app.state.RAG_EMBEDDING_MODEL,
app.state.sentence_transformer_ef,
app.state.OPENAI_API_KEY,
app.state.OPENAI_API_BASE_URL,
)
2024-01-07 06:07:20 +00:00
origins = ["*"]
2024-04-25 12:49:59 +00:00
2024-01-07 06:07:20 +00:00
app.add_middleware(
CORSMiddleware,
allow_origins=origins,
allow_credentials=True,
allow_methods=["*"],
allow_headers=["*"],
)
2024-01-07 07:40:51 +00:00
class CollectionNameForm(BaseModel):
2024-01-07 06:59:22 +00:00
collection_name: Optional[str] = "test"
2024-05-02 00:17:00 +00:00
class UrlForm(CollectionNameForm):
2024-01-07 07:40:51 +00:00
url: str
2024-03-26 06:47:08 +00:00
2024-01-07 06:07:20 +00:00
@app.get("/")
async def get_status():
2024-02-18 06:29:52 +00:00
return {
"status": True,
"chunk_size": app.state.CHUNK_SIZE,
"chunk_overlap": app.state.CHUNK_OVERLAP,
2024-02-19 19:05:45 +00:00
"template": app.state.RAG_TEMPLATE,
2024-04-14 21:55:00 +00:00
"embedding_engine": app.state.RAG_EMBEDDING_ENGINE,
2024-02-19 19:05:45 +00:00
"embedding_model": app.state.RAG_EMBEDDING_MODEL,
2024-04-22 20:49:58 +00:00
"reranking_model": app.state.RAG_RERANKING_MODEL,
2024-02-19 19:05:45 +00:00
}
2024-04-14 22:31:40 +00:00
@app.get("/embedding")
async def get_embedding_config(user=Depends(get_admin_user)):
2024-02-19 19:05:45 +00:00
return {
"status": True,
2024-04-14 22:31:40 +00:00
"embedding_engine": app.state.RAG_EMBEDDING_ENGINE,
2024-02-19 19:05:45 +00:00
"embedding_model": app.state.RAG_EMBEDDING_MODEL,
2024-04-14 23:15:39 +00:00
"openai_config": {
2024-04-20 20:21:52 +00:00
"url": app.state.OPENAI_API_BASE_URL,
"key": app.state.OPENAI_API_KEY,
2024-04-14 23:15:39 +00:00
},
2024-02-19 19:05:45 +00:00
}
2024-04-22 20:49:58 +00:00
@app.get("/reranking")
async def get_reraanking_config(user=Depends(get_admin_user)):
return {"status": True, "reranking_model": app.state.RAG_RERANKING_MODEL}
2024-04-14 23:15:39 +00:00
class OpenAIConfigForm(BaseModel):
url: str
key: str
2024-02-19 19:05:45 +00:00
class EmbeddingModelUpdateForm(BaseModel):
2024-04-14 23:15:39 +00:00
openai_config: Optional[OpenAIConfigForm] = None
2024-04-14 22:31:40 +00:00
embedding_engine: str
2024-02-19 19:05:45 +00:00
embedding_model: str
2024-04-14 22:31:40 +00:00
@app.post("/embedding/update")
async def update_embedding_config(
2024-02-19 19:05:45 +00:00
form_data: EmbeddingModelUpdateForm, user=Depends(get_admin_user)
):
2024-04-04 18:07:42 +00:00
log.info(
f"Updating embedding model: {app.state.RAG_EMBEDDING_MODEL} to {form_data.embedding_model}"
2024-02-19 19:05:45 +00:00
)
try:
2024-04-14 22:31:40 +00:00
app.state.RAG_EMBEDDING_ENGINE = form_data.embedding_engine
app.state.RAG_EMBEDDING_MODEL = form_data.embedding_model
2024-04-14 22:31:40 +00:00
2024-04-14 23:15:39 +00:00
if app.state.RAG_EMBEDDING_ENGINE in ["ollama", "openai"]:
if form_data.openai_config != None:
2024-04-20 20:21:52 +00:00
app.state.OPENAI_API_BASE_URL = form_data.openai_config.url
app.state.OPENAI_API_KEY = form_data.openai_config.key
2024-04-25 12:49:59 +00:00
update_embedding_model(app.state.RAG_EMBEDDING_MODEL, True)
2024-04-27 19:38:50 +00:00
app.state.EMBEDDING_FUNCTION = get_embedding_function(
app.state.RAG_EMBEDDING_ENGINE,
app.state.RAG_EMBEDDING_MODEL,
app.state.sentence_transformer_ef,
app.state.OPENAI_API_KEY,
app.state.OPENAI_API_BASE_URL,
)
return {
"status": True,
2024-04-14 22:31:40 +00:00
"embedding_engine": app.state.RAG_EMBEDDING_ENGINE,
"embedding_model": app.state.RAG_EMBEDDING_MODEL,
2024-04-14 23:15:39 +00:00
"openai_config": {
2024-04-20 20:21:52 +00:00
"url": app.state.OPENAI_API_BASE_URL,
"key": app.state.OPENAI_API_KEY,
2024-04-14 23:15:39 +00:00
},
}
except Exception as e:
log.exception(f"Problem updating embedding model: {e}")
raise HTTPException(
status_code=status.HTTP_500_INTERNAL_SERVER_ERROR,
detail=ERROR_MESSAGES.DEFAULT(e),
)
2024-02-18 06:29:52 +00:00
2024-04-22 20:49:58 +00:00
class RerankingModelUpdateForm(BaseModel):
reranking_model: str
2024-04-22 20:49:58 +00:00
@app.post("/reranking/update")
async def update_reranking_config(
form_data: RerankingModelUpdateForm, user=Depends(get_admin_user)
):
log.info(
f"Updating reranking model: {app.state.RAG_RERANKING_MODEL} to {form_data.reranking_model}"
)
try:
app.state.RAG_RERANKING_MODEL = form_data.reranking_model
2024-04-25 12:49:59 +00:00
update_reranking_model(app.state.RAG_RERANKING_MODEL, True)
2024-04-22 20:49:58 +00:00
return {
"status": True,
"reranking_model": app.state.RAG_RERANKING_MODEL,
}
except Exception as e:
log.exception(f"Problem updating reranking model: {e}")
raise HTTPException(
status_code=status.HTTP_500_INTERNAL_SERVER_ERROR,
detail=ERROR_MESSAGES.DEFAULT(e),
)
2024-03-10 20:32:34 +00:00
@app.get("/config")
async def get_rag_config(user=Depends(get_admin_user)):
2024-02-18 06:29:52 +00:00
return {
"status": True,
2024-03-10 20:32:34 +00:00
"pdf_extract_images": app.state.PDF_EXTRACT_IMAGES,
"chunk": {
"chunk_size": app.state.CHUNK_SIZE,
"chunk_overlap": app.state.CHUNK_OVERLAP,
},
"web_loader_ssl_verification": app.state.ENABLE_RAG_WEB_LOADER_SSL_VERIFICATION,
2024-02-18 06:29:52 +00:00
}
class ChunkParamUpdateForm(BaseModel):
chunk_size: int
chunk_overlap: int
2024-03-10 20:32:34 +00:00
class ConfigUpdateForm(BaseModel):
pdf_extract_images: Optional[bool] = None
chunk: Optional[ChunkParamUpdateForm] = None
web_loader_ssl_verification: Optional[bool] = None
2024-03-10 20:32:34 +00:00
@app.post("/config/update")
async def update_rag_config(form_data: ConfigUpdateForm, user=Depends(get_admin_user)):
app.state.PDF_EXTRACT_IMAGES = (
form_data.pdf_extract_images
if form_data.pdf_extract_images != None
else app.state.PDF_EXTRACT_IMAGES
)
app.state.CHUNK_SIZE = (
form_data.chunk.chunk_size if form_data.chunk != None else app.state.CHUNK_SIZE
)
app.state.CHUNK_OVERLAP = (
form_data.chunk.chunk_overlap
if form_data.chunk != None
else app.state.CHUNK_OVERLAP
)
app.state.ENABLE_RAG_WEB_LOADER_SSL_VERIFICATION = (
form_data.web_loader_ssl_verification
if form_data.web_loader_ssl_verification != None
else app.state.ENABLE_RAG_WEB_LOADER_SSL_VERIFICATION
)
2024-02-18 06:29:52 +00:00
return {
"status": True,
2024-03-10 20:32:34 +00:00
"pdf_extract_images": app.state.PDF_EXTRACT_IMAGES,
"chunk": {
"chunk_size": app.state.CHUNK_SIZE,
"chunk_overlap": app.state.CHUNK_OVERLAP,
},
"web_loader_ssl_verification": app.state.ENABLE_RAG_WEB_LOADER_SSL_VERIFICATION,
2024-02-18 06:29:52 +00:00
}
2024-01-07 06:59:22 +00:00
2024-02-18 06:41:03 +00:00
@app.get("/template")
async def get_rag_template(user=Depends(get_current_user)):
return {
"status": True,
"template": app.state.RAG_TEMPLATE,
}
2024-03-03 02:56:57 +00:00
@app.get("/query/settings")
async def get_query_settings(user=Depends(get_admin_user)):
return {
"status": True,
"template": app.state.RAG_TEMPLATE,
"k": app.state.TOP_K,
"r": app.state.RELEVANCE_THRESHOLD,
2024-04-26 18:41:39 +00:00
"hybrid": app.state.ENABLE_RAG_HYBRID_SEARCH,
2024-03-03 02:56:57 +00:00
}
2024-02-18 06:41:03 +00:00
2024-03-03 02:56:57 +00:00
class QuerySettingsForm(BaseModel):
k: Optional[int] = None
r: Optional[float] = None
2024-03-03 02:56:57 +00:00
template: Optional[str] = None
2024-04-25 22:31:21 +00:00
hybrid: Optional[bool] = None
2024-03-03 02:56:57 +00:00
@app.post("/query/settings/update")
async def update_query_settings(
form_data: QuerySettingsForm, user=Depends(get_admin_user)
):
app.state.RAG_TEMPLATE = form_data.template if form_data.template else RAG_TEMPLATE
app.state.TOP_K = form_data.k if form_data.k else 4
app.state.RELEVANCE_THRESHOLD = form_data.r if form_data.r else 0.0
2024-04-26 18:41:39 +00:00
app.state.ENABLE_RAG_HYBRID_SEARCH = form_data.hybrid if form_data.hybrid else False
2024-04-25 22:31:21 +00:00
return {
"status": True,
"template": app.state.RAG_TEMPLATE,
"k": app.state.TOP_K,
"r": app.state.RELEVANCE_THRESHOLD,
2024-04-26 18:41:39 +00:00
"hybrid": app.state.ENABLE_RAG_HYBRID_SEARCH,
2024-04-25 22:31:21 +00:00
}
2024-01-07 06:59:22 +00:00
2024-02-03 23:57:06 +00:00
class QueryDocForm(BaseModel):
2024-02-01 21:35:41 +00:00
collection_name: str
query: str
2024-03-03 02:56:57 +00:00
k: Optional[int] = None
r: Optional[float] = None
2024-04-25 22:31:21 +00:00
hybrid: Optional[bool] = None
2024-02-01 21:35:41 +00:00
2024-02-03 23:57:06 +00:00
@app.post("/query/doc")
2024-03-09 03:26:39 +00:00
def query_doc_handler(
2024-02-03 23:57:06 +00:00
form_data: QueryDocForm,
2024-01-07 10:46:12 +00:00
user=Depends(get_current_user),
):
2024-01-07 09:59:00 +00:00
try:
2024-04-27 19:38:50 +00:00
if app.state.ENABLE_RAG_HYBRID_SEARCH:
return query_doc_with_hybrid_search(
collection_name=form_data.collection_name,
query=form_data.query,
2024-04-29 17:15:58 +00:00
embedding_function=app.state.EMBEDDING_FUNCTION,
2024-04-27 19:38:50 +00:00
k=form_data.k if form_data.k else app.state.TOP_K,
2024-04-29 17:15:58 +00:00
reranking_function=app.state.sentence_transformer_rf,
2024-04-27 19:38:50 +00:00
r=form_data.r if form_data.r else app.state.RELEVANCE_THRESHOLD,
)
else:
return query_doc(
collection_name=form_data.collection_name,
query=form_data.query,
2024-04-29 17:15:58 +00:00
embedding_function=app.state.EMBEDDING_FUNCTION,
2024-04-27 19:38:50 +00:00
k=form_data.k if form_data.k else app.state.TOP_K,
)
2024-01-07 09:59:00 +00:00
except Exception as e:
log.exception(e)
2024-01-07 09:59:00 +00:00
raise HTTPException(
status_code=status.HTTP_400_BAD_REQUEST,
detail=ERROR_MESSAGES.DEFAULT(e),
)
2024-01-07 06:59:22 +00:00
2024-02-01 21:35:41 +00:00
class QueryCollectionsForm(BaseModel):
collection_names: List[str]
query: str
2024-03-03 02:56:57 +00:00
k: Optional[int] = None
r: Optional[float] = None
2024-04-25 22:31:21 +00:00
hybrid: Optional[bool] = None
2024-02-01 21:35:41 +00:00
2024-02-03 23:57:06 +00:00
@app.post("/query/collection")
2024-03-09 03:26:39 +00:00
def query_collection_handler(
2024-02-01 21:35:41 +00:00
form_data: QueryCollectionsForm,
user=Depends(get_current_user),
):
2024-04-14 21:55:00 +00:00
try:
2024-04-27 19:38:50 +00:00
if app.state.ENABLE_RAG_HYBRID_SEARCH:
return query_collection_with_hybrid_search(
collection_names=form_data.collection_names,
query=form_data.query,
2024-04-29 17:15:58 +00:00
embedding_function=app.state.EMBEDDING_FUNCTION,
2024-04-27 19:38:50 +00:00
k=form_data.k if form_data.k else app.state.TOP_K,
2024-04-29 17:15:58 +00:00
reranking_function=app.state.sentence_transformer_rf,
2024-04-27 19:38:50 +00:00
r=form_data.r if form_data.r else app.state.RELEVANCE_THRESHOLD,
)
else:
return query_collection(
collection_names=form_data.collection_names,
query=form_data.query,
2024-04-29 17:15:58 +00:00
embedding_function=app.state.EMBEDDING_FUNCTION,
2024-04-27 19:38:50 +00:00
k=form_data.k if form_data.k else app.state.TOP_K,
)
2024-04-14 23:15:39 +00:00
2024-04-14 21:55:00 +00:00
except Exception as e:
log.exception(e)
raise HTTPException(
status_code=status.HTTP_400_BAD_REQUEST,
detail=ERROR_MESSAGES.DEFAULT(e),
)
2024-02-01 21:35:41 +00:00
2024-05-02 00:17:00 +00:00
@app.post("/youtube")
def store_youtube_video(form_data: UrlForm, user=Depends(get_current_user)):
try:
loader = YoutubeLoader.from_youtube_url(form_data.url, add_video_info=False)
data = loader.load()
collection_name = form_data.collection_name
if collection_name == "":
collection_name = calculate_sha256_string(form_data.url)[:63]
store_data_in_vector_db(data, collection_name, overwrite=True)
return {
"status": True,
"collection_name": collection_name,
"filename": form_data.url,
}
except Exception as e:
log.exception(e)
raise HTTPException(
status_code=status.HTTP_400_BAD_REQUEST,
detail=ERROR_MESSAGES.DEFAULT(e),
)
2024-01-07 06:59:22 +00:00
@app.post("/web")
2024-05-02 00:17:00 +00:00
def store_web(form_data: UrlForm, user=Depends(get_current_user)):
2024-01-07 06:59:22 +00:00
# "https://www.gutenberg.org/files/1727/1727-h/1727-h.htm"
try:
loader = get_web_loader(
form_data.url, verify_ssl=app.state.ENABLE_RAG_WEB_LOADER_SSL_VERIFICATION
)
2024-01-07 06:59:22 +00:00
data = loader.load()
2024-01-27 06:17:28 +00:00
collection_name = form_data.collection_name
if collection_name == "":
collection_name = calculate_sha256_string(form_data.url)[:63]
store_data_in_vector_db(data, collection_name, overwrite=True)
2024-01-08 09:26:15 +00:00
return {
"status": True,
2024-01-27 06:17:28 +00:00
"collection_name": collection_name,
2024-01-08 09:26:15 +00:00
"filename": form_data.url,
}
2024-01-07 06:59:22 +00:00
except Exception as e:
log.exception(e)
2024-01-07 06:59:22 +00:00
raise HTTPException(
status_code=status.HTTP_400_BAD_REQUEST,
detail=ERROR_MESSAGES.DEFAULT(e),
)
def get_web_loader(url: str, verify_ssl: bool = True):
# Check if the URL is valid
if isinstance(validators.url(url), validators.ValidationError):
raise ValueError(ERROR_MESSAGES.INVALID_URL)
if not ENABLE_RAG_LOCAL_WEB_FETCH:
# Local web fetch is disabled, filter out any URLs that resolve to private IP addresses
parsed_url = urllib.parse.urlparse(url)
# Get IPv4 and IPv6 addresses
ipv4_addresses, ipv6_addresses = resolve_hostname(parsed_url.hostname)
# Check if any of the resolved addresses are private
# This is technically still vulnerable to DNS rebinding attacks, as we don't control WebBaseLoader
for ip in ipv4_addresses:
if validators.ipv4(ip, private=True):
raise ValueError(ERROR_MESSAGES.INVALID_URL)
for ip in ipv6_addresses:
if validators.ipv6(ip, private=True):
raise ValueError(ERROR_MESSAGES.INVALID_URL)
return WebBaseLoader(url, verify_ssl=verify_ssl)
def resolve_hostname(hostname):
# Get address information
addr_info = socket.getaddrinfo(hostname, None)
# Extract IP addresses from address information
ipv4_addresses = [info[4][0] for info in addr_info if info[0] == socket.AF_INET]
ipv6_addresses = [info[4][0] for info in addr_info if info[0] == socket.AF_INET6]
return ipv4_addresses, ipv6_addresses
2024-03-24 07:40:27 +00:00
def store_data_in_vector_db(data, collection_name, overwrite: bool = False) -> bool:
2024-03-26 06:47:08 +00:00
2024-03-24 07:40:27 +00:00
text_splitter = RecursiveCharacterTextSplitter(
chunk_size=app.state.CHUNK_SIZE,
chunk_overlap=app.state.CHUNK_OVERLAP,
add_start_index=True,
)
2024-04-14 21:55:00 +00:00
2024-03-24 07:40:27 +00:00
docs = text_splitter.split_documents(data)
2024-03-26 06:47:08 +00:00
if len(docs) > 0:
2024-04-14 23:48:15 +00:00
log.info(f"store_data_in_vector_db {docs}")
2024-03-26 06:47:08 +00:00
return store_docs_in_vector_db(docs, collection_name, overwrite), None
else:
raise ValueError(ERROR_MESSAGES.EMPTY_CONTENT)
2024-03-24 07:40:27 +00:00
def store_text_in_vector_db(
2024-03-24 07:41:41 +00:00
text, metadata, collection_name, overwrite: bool = False
2024-03-24 07:40:27 +00:00
) -> bool:
text_splitter = RecursiveCharacterTextSplitter(
chunk_size=app.state.CHUNK_SIZE,
chunk_overlap=app.state.CHUNK_OVERLAP,
add_start_index=True,
)
2024-03-24 07:41:41 +00:00
docs = text_splitter.create_documents([text], metadatas=[metadata])
2024-03-24 07:40:27 +00:00
return store_docs_in_vector_db(docs, collection_name, overwrite)
2024-04-14 22:47:45 +00:00
def store_docs_in_vector_db(docs, collection_name, overwrite: bool = False) -> bool:
2024-04-14 23:48:15 +00:00
log.info(f"store_docs_in_vector_db {docs} {collection_name}")
2024-03-26 06:47:08 +00:00
2024-03-24 07:40:27 +00:00
texts = [doc.page_content for doc in docs]
metadatas = [doc.metadata for doc in docs]
try:
if overwrite:
for collection in CHROMA_CLIENT.list_collections():
if collection_name == collection.name:
log.info(f"deleting existing collection {collection_name}")
2024-03-24 07:40:27 +00:00
CHROMA_CLIENT.delete_collection(name=collection_name)
collection = CHROMA_CLIENT.create_collection(name=collection_name)
2024-04-14 21:55:00 +00:00
2024-04-27 19:38:50 +00:00
embedding_func = get_embedding_function(
2024-04-22 20:49:58 +00:00
app.state.RAG_EMBEDDING_ENGINE,
app.state.RAG_EMBEDDING_MODEL,
app.state.sentence_transformer_ef,
app.state.OPENAI_API_KEY,
app.state.OPENAI_API_BASE_URL,
)
embedding_texts = list(map(lambda x: x.replace("\n", " "), texts))
embeddings = embedding_func(embedding_texts)
for batch in create_batches(
api=CHROMA_CLIENT,
ids=[str(uuid.uuid4()) for _ in texts],
metadatas=metadatas,
embeddings=embeddings,
documents=texts,
):
collection.add(*batch)
2024-04-09 14:38:40 +00:00
2024-04-14 23:15:39 +00:00
return True
2024-03-24 07:40:27 +00:00
except Exception as e:
log.exception(e)
2024-03-24 07:40:27 +00:00
if e.__class__.__name__ == "UniqueConstraintError":
return True
return False
2024-02-18 05:06:08 +00:00
def get_loader(filename: str, file_content_type: str, file_path: str):
file_ext = filename.split(".")[-1].lower()
2024-01-25 08:24:49 +00:00
known_type = True
known_source_ext = [
"go",
"py",
"java",
"sh",
"bat",
"ps1",
"cmd",
"js",
"ts",
"css",
"cpp",
"hpp",
"h",
"c",
"cs",
"sql",
"log",
"ini",
"pl",
"pm",
"r",
"dart",
"dockerfile",
"env",
"php",
"hs",
"hsc",
"lua",
"nginxconf",
"conf",
"m",
"mm",
"plsql",
"perl",
"rb",
"rs",
"db2",
"scala",
"bash",
"swift",
"vue",
"svelte",
]
if file_ext == "pdf":
2024-03-10 20:32:34 +00:00
loader = PyPDFLoader(file_path, extract_images=app.state.PDF_EXTRACT_IMAGES)
2024-01-25 08:24:49 +00:00
elif file_ext == "csv":
loader = CSVLoader(file_path)
elif file_ext == "rst":
loader = UnstructuredRSTLoader(file_path, mode="elements")
elif file_ext == "xml":
loader = UnstructuredXMLLoader(file_path)
2024-03-25 08:50:53 +00:00
elif file_ext in ["htm", "html"]:
2024-03-26 06:50:52 +00:00
loader = BSHTMLLoader(file_path, open_encoding="unicode_escape")
2024-01-25 08:24:49 +00:00
elif file_ext == "md":
loader = UnstructuredMarkdownLoader(file_path)
2024-02-18 05:06:08 +00:00
elif file_content_type == "application/epub+zip":
2024-01-25 08:24:49 +00:00
loader = UnstructuredEPubLoader(file_path)
elif (
2024-02-18 05:06:08 +00:00
file_content_type
2024-01-25 08:24:49 +00:00
== "application/vnd.openxmlformats-officedocument.wordprocessingml.document"
or file_ext in ["doc", "docx"]
):
loader = Docx2txtLoader(file_path)
2024-02-18 05:06:08 +00:00
elif file_content_type in [
2024-01-25 08:24:49 +00:00
"application/vnd.ms-excel",
"application/vnd.openxmlformats-officedocument.spreadsheetml.sheet",
] or file_ext in ["xls", "xlsx"]:
loader = UnstructuredExcelLoader(file_path)
2024-03-03 02:56:57 +00:00
elif file_ext in known_source_ext or (
file_content_type and file_content_type.find("text/") >= 0
):
2024-03-16 06:52:37 +00:00
loader = TextLoader(file_path, autodetect_encoding=True)
2024-01-25 08:24:49 +00:00
else:
2024-03-16 06:52:37 +00:00
loader = TextLoader(file_path, autodetect_encoding=True)
2024-01-25 08:24:49 +00:00
known_type = False
return loader, known_type
2024-01-07 06:59:22 +00:00
@app.post("/doc")
2024-01-07 10:46:12 +00:00
def store_doc(
2024-01-07 17:00:30 +00:00
collection_name: Optional[str] = Form(None),
2024-01-07 10:46:12 +00:00
file: UploadFile = File(...),
user=Depends(get_current_user),
):
2024-01-07 06:59:22 +00:00
# "https://www.gutenberg.org/files/1727/1727-h/1727-h.htm"
2024-01-07 07:40:51 +00:00
log.info(f"file.content_type: {file.content_type}")
2024-01-07 06:59:22 +00:00
try:
unsanitized_filename = file.filename
2024-04-05 00:38:59 +00:00
filename = os.path.basename(unsanitized_filename)
2024-04-05 00:38:59 +00:00
file_path = f"{UPLOAD_DIR}/{filename}"
2024-01-07 06:59:22 +00:00
contents = file.file.read()
2024-01-07 07:40:51 +00:00
with open(file_path, "wb") as f:
2024-01-07 06:59:22 +00:00
f.write(contents)
f.close()
2024-01-07 17:00:30 +00:00
f = open(file_path, "rb")
if collection_name == None:
collection_name = calculate_sha256(f)[:63]
f.close()
2024-04-05 00:38:59 +00:00
loader, known_type = get_loader(filename, file.content_type, file_path)
2024-01-07 07:40:51 +00:00
data = loader.load()
2024-03-26 06:47:08 +00:00
try:
result = store_data_in_vector_db(data, collection_name)
if result:
return {
"status": True,
"collection_name": collection_name,
"filename": filename,
"known_type": known_type,
}
except Exception as e:
2024-01-07 09:40:36 +00:00
raise HTTPException(
status_code=status.HTTP_500_INTERNAL_SERVER_ERROR,
2024-03-26 06:47:08 +00:00
detail=e,
2024-01-07 09:40:36 +00:00
)
2024-01-07 06:59:22 +00:00
except Exception as e:
log.exception(e)
2024-01-13 13:46:56 +00:00
if "No pandoc was found" in str(e):
raise HTTPException(
status_code=status.HTTP_400_BAD_REQUEST,
detail=ERROR_MESSAGES.PANDOC_NOT_INSTALLED,
)
else:
raise HTTPException(
status_code=status.HTTP_400_BAD_REQUEST,
detail=ERROR_MESSAGES.DEFAULT(e),
)
2024-01-07 06:59:22 +00:00
2024-03-24 07:40:27 +00:00
class TextRAGForm(BaseModel):
name: str
content: str
collection_name: Optional[str] = None
@app.post("/text")
def store_text(
form_data: TextRAGForm,
user=Depends(get_current_user),
):
collection_name = form_data.collection_name
if collection_name == None:
collection_name = calculate_sha256_string(form_data.content)
2024-03-24 07:41:41 +00:00
result = store_text_in_vector_db(
form_data.content,
metadata={"name": form_data.name, "created_by": user.id},
collection_name=collection_name,
)
2024-03-24 07:40:27 +00:00
if result:
return {"status": True, "collection_name": collection_name}
else:
raise HTTPException(
status_code=status.HTTP_500_INTERNAL_SERVER_ERROR,
detail=ERROR_MESSAGES.DEFAULT(),
)
2024-02-18 05:06:08 +00:00
@app.get("/scan")
def scan_docs_dir(user=Depends(get_admin_user)):
for path in Path(DOCS_DIR).rglob("./**/*"):
try:
2024-02-18 05:06:08 +00:00
if path.is_file() and not path.name.startswith("."):
tags = extract_folders_after_data_docs(path)
filename = path.name
file_content_type = mimetypes.guess_type(path)
f = open(path, "rb")
collection_name = calculate_sha256(f)[:63]
f.close()
2024-02-18 05:31:46 +00:00
loader, known_type = get_loader(
filename, file_content_type[0], str(path)
)
2024-02-18 05:06:08 +00:00
data = loader.load()
2024-03-26 06:47:08 +00:00
try:
result = store_data_in_vector_db(data, collection_name)
if result:
sanitized_filename = sanitize_filename(filename)
doc = Documents.get_doc_by_name(sanitized_filename)
if doc == None:
doc = Documents.insert_new_doc(
user.id,
DocumentForm(
**{
"name": sanitized_filename,
"title": filename,
"collection_name": collection_name,
"filename": filename,
"content": (
json.dumps(
{
"tags": list(
map(
lambda name: {"name": name},
tags,
)
2024-02-18 05:06:08 +00:00
)
2024-03-26 06:47:08 +00:00
}
)
if len(tags)
else "{}"
),
}
),
)
except Exception as e:
log.exception(e)
2024-03-26 06:47:08 +00:00
pass
2024-02-18 05:06:08 +00:00
except Exception as e:
log.exception(e)
2024-02-18 05:06:08 +00:00
return True
2024-01-07 09:40:36 +00:00
@app.get("/reset/db")
def reset_vector_db(user=Depends(get_admin_user)):
CHROMA_CLIENT.reset()
2024-01-07 09:40:36 +00:00
@app.get("/reset")
def reset(user=Depends(get_admin_user)) -> bool:
folder = f"{UPLOAD_DIR}"
for filename in os.listdir(folder):
file_path = os.path.join(folder, filename)
2024-01-07 09:40:36 +00:00
try:
if os.path.isfile(file_path) or os.path.islink(file_path):
os.unlink(file_path)
elif os.path.isdir(file_path):
shutil.rmtree(file_path)
2024-01-07 09:40:36 +00:00
except Exception as e:
log.error("Failed to delete %s. Reason: %s" % (file_path, e))
2024-01-07 09:40:36 +00:00
try:
CHROMA_CLIENT.reset()
except Exception as e:
log.exception(e)
return True