2024-10-09 10:51:43 +00:00
|
|
|
from typing import Optional
|
|
|
|
|
|
|
|
from qdrant_client import QdrantClient as Qclient
|
|
|
|
from qdrant_client.http.models import PointStruct
|
|
|
|
from qdrant_client.models import models
|
|
|
|
|
|
|
|
from open_webui.apps.retrieval.vector.main import VectorItem, SearchResult, GetResult
|
|
|
|
from open_webui.config import QDRANT_URI
|
|
|
|
|
|
|
|
class QdrantClient:
|
|
|
|
def __init__(self):
|
|
|
|
self.collection_prefix = "open-webui"
|
|
|
|
self.QDRANT_URI = QDRANT_URI
|
|
|
|
self.client = Qclient(url=self.QDRANT_URI) if self.QDRANT_URI else None
|
|
|
|
|
|
|
|
def _result_to_get_result(self, points) -> GetResult:
|
|
|
|
ids = []
|
|
|
|
documents = []
|
|
|
|
metadatas = []
|
|
|
|
|
|
|
|
for point in points:
|
|
|
|
payload = point.payload
|
|
|
|
ids.append(point.id)
|
|
|
|
documents.append(payload["text"])
|
|
|
|
metadatas.append(payload["metadata"])
|
|
|
|
|
|
|
|
return GetResult(
|
|
|
|
**{
|
|
|
|
"ids": [ids],
|
|
|
|
"documents": [documents],
|
|
|
|
"metadatas": [metadatas],
|
|
|
|
}
|
|
|
|
)
|
|
|
|
|
|
|
|
def _create_collection(self, collection_name: str, dimension: int):
|
|
|
|
collection_name_with_prefix = f"{self.collection_prefix}_{collection_name}"
|
|
|
|
self.client.create_collection(
|
|
|
|
collection_name=collection_name_with_prefix,
|
|
|
|
vectors_config=models.VectorParams(size=dimension, distance=models.Distance.COSINE),
|
|
|
|
)
|
|
|
|
|
2024-10-09 11:10:23 +00:00
|
|
|
print(f"collection {collection_name_with_prefix} successfully created!")
|
2024-10-09 10:51:43 +00:00
|
|
|
|
|
|
|
def _create_collection_if_not_exists(self, collection_name, dimension):
|
|
|
|
if not self.has_collection(
|
|
|
|
collection_name=collection_name
|
|
|
|
):
|
|
|
|
self._create_collection(
|
|
|
|
collection_name=collection_name, dimension=dimension
|
|
|
|
)
|
|
|
|
|
2024-10-09 16:29:14 +00:00
|
|
|
def _create_points(self, items: list[VectorItem]):
|
|
|
|
return [
|
|
|
|
PointStruct(
|
|
|
|
id=item["id"],
|
|
|
|
vector=item["vector"],
|
|
|
|
payload={
|
|
|
|
"text": item["text"],
|
|
|
|
"metadata": item["metadata"]
|
|
|
|
},
|
|
|
|
)
|
|
|
|
for item in items
|
|
|
|
]
|
|
|
|
|
2024-10-09 10:51:43 +00:00
|
|
|
def has_collection(self, collection_name: str) -> bool:
|
|
|
|
return self.client.collection_exists(f"{self.collection_prefix}_{collection_name}")
|
|
|
|
|
|
|
|
def delete_collection(self, collection_name: str):
|
|
|
|
return self.client.delete_collection(collection_name=f"{self.collection_prefix}_{collection_name}")
|
|
|
|
|
|
|
|
def search(
|
|
|
|
self, collection_name: str, vectors: list[list[float | int]], limit: int
|
|
|
|
) -> Optional[SearchResult]:
|
|
|
|
# Search for the nearest neighbor items based on the vectors and return 'limit' number of results.
|
2024-10-09 11:23:04 +00:00
|
|
|
if limit is None:
|
|
|
|
limit=10000000 # otherwise qdrant would set limit to 10!
|
2024-10-09 10:51:43 +00:00
|
|
|
|
|
|
|
query_response = self.client.query_points(
|
|
|
|
collection_name=f"{self.collection_prefix}_{collection_name}",
|
|
|
|
query=vectors[0],
|
|
|
|
limit=limit,
|
|
|
|
)
|
|
|
|
get_result = self._result_to_get_result(query_response.points)
|
|
|
|
return SearchResult(
|
|
|
|
ids=get_result.ids,
|
|
|
|
documents=get_result.documents,
|
|
|
|
metadatas=get_result.metadatas,
|
|
|
|
distances=[[point.score for point in query_response.points]]
|
|
|
|
)
|
|
|
|
|
|
|
|
def query(self, collection_name: str, filter: dict, limit: Optional[int] = None):
|
|
|
|
# Construct the filter string for querying
|
|
|
|
if not self.has_collection(collection_name):
|
|
|
|
return None
|
|
|
|
try:
|
2024-10-09 11:23:04 +00:00
|
|
|
if limit is None:
|
|
|
|
limit=10000000 # otherwise qdrant would set limit to 10!
|
2024-10-09 10:51:43 +00:00
|
|
|
|
|
|
|
field_conditions = []
|
|
|
|
for key, value in filter.items():
|
|
|
|
field_conditions.append(
|
|
|
|
models.FieldCondition(key=f"metadata.{key}", match=models.MatchValue(value=value)))
|
|
|
|
|
|
|
|
points = self.client.query_points(
|
|
|
|
collection_name=f"{self.collection_prefix}_{collection_name}",
|
|
|
|
query_filter=models.Filter(should=field_conditions),
|
|
|
|
limit=limit,
|
|
|
|
)
|
|
|
|
return self._result_to_get_result(points.points)
|
|
|
|
except Exception as e:
|
|
|
|
print(e)
|
|
|
|
return None
|
|
|
|
|
|
|
|
def get(self, collection_name: str) -> Optional[GetResult]:
|
|
|
|
# Get all the items in the collection.
|
|
|
|
points = self.client.query_points(
|
|
|
|
collection_name=f"{self.collection_prefix}_{collection_name}",
|
|
|
|
limit=10000000 # default is 10
|
|
|
|
)
|
|
|
|
return self._result_to_get_result(points.points)
|
|
|
|
|
|
|
|
def insert(self, collection_name: str, items: list[VectorItem]):
|
|
|
|
# Insert the items into the collection, if the collection does not exist, it will be created.
|
|
|
|
self._create_collection_if_not_exists(collection_name, len(items[0]["vector"]))
|
2024-10-09 16:29:14 +00:00
|
|
|
points = self._create_points(items)
|
2024-10-09 10:51:43 +00:00
|
|
|
self.client.upload_points(f"{self.collection_prefix}_{collection_name}", points)
|
|
|
|
|
|
|
|
def upsert(self, collection_name: str, items: list[VectorItem]):
|
|
|
|
# Update the items in the collection, if the items are not present, insert them. If the collection does not exist, it will be created.
|
|
|
|
self._create_collection_if_not_exists(collection_name, len(items[0]["vector"]))
|
2024-10-09 16:29:14 +00:00
|
|
|
points = self._create_points(items)
|
2024-10-09 10:51:43 +00:00
|
|
|
return self.client.upsert(f"{self.collection_prefix}_{collection_name}", points)
|
|
|
|
|
|
|
|
def delete(
|
|
|
|
self,
|
|
|
|
collection_name: str,
|
|
|
|
ids: Optional[list[str]] = None,
|
|
|
|
filter: Optional[dict] = None,
|
|
|
|
):
|
|
|
|
# Delete the items from the collection based on the ids.
|
|
|
|
field_conditions = []
|
|
|
|
|
|
|
|
if ids:
|
|
|
|
for id_value in ids:
|
|
|
|
field_conditions.append(
|
|
|
|
models.FieldCondition(
|
|
|
|
key="metadata.id",
|
|
|
|
match=models.MatchValue(value=id_value),
|
|
|
|
),
|
|
|
|
),
|
|
|
|
elif filter:
|
|
|
|
for key, value in filter.items():
|
|
|
|
field_conditions.append(
|
|
|
|
models.FieldCondition(
|
|
|
|
key=f"metadata.{key}",
|
|
|
|
match=models.MatchValue(value=value),
|
|
|
|
),
|
|
|
|
),
|
|
|
|
|
|
|
|
return self.client.delete(
|
|
|
|
collection_name=f"{self.collection_prefix}_{collection_name}",
|
|
|
|
points_selector=models.FilterSelector(
|
|
|
|
filter=models.Filter(
|
|
|
|
must=field_conditions
|
|
|
|
)
|
|
|
|
),
|
|
|
|
)
|
|
|
|
|
|
|
|
def reset(self):
|
|
|
|
# Resets the database. This will delete all collections and item entries.
|
|
|
|
collection_names = self.client.get_collections().collections
|
|
|
|
for collection_name in collection_names:
|
|
|
|
if collection_name.name.startswith(self.collection_prefix):
|
|
|
|
self.client.delete_collection(collection_name=collection_name.name)
|