2024-06-11 03:39:55 +00:00
|
|
|
import inspect
|
2024-08-19 09:53:12 +00:00
|
|
|
import logging
|
2024-11-21 17:19:56 +00:00
|
|
|
import re
|
|
|
|
from typing import Any, Awaitable, Callable, get_type_hints
|
|
|
|
from functools import update_wrapper, partial
|
2024-08-19 09:53:12 +00:00
|
|
|
|
2024-11-21 17:19:56 +00:00
|
|
|
from langchain_core.utils.function_calling import convert_to_openai_function
|
2024-09-04 14:54:48 +00:00
|
|
|
from open_webui.apps.webui.models.tools import Tools
|
|
|
|
from open_webui.apps.webui.models.users import UserModel
|
2024-11-17 01:54:38 +00:00
|
|
|
from open_webui.apps.webui.utils import load_tools_module_by_id
|
2024-11-21 17:19:56 +00:00
|
|
|
from pydantic import BaseModel, Field, create_model
|
2024-08-19 15:27:38 +00:00
|
|
|
|
2024-08-19 09:53:12 +00:00
|
|
|
log = logging.getLogger(__name__)
|
|
|
|
|
|
|
|
|
|
|
|
def apply_extra_params_to_tool_function(
|
|
|
|
function: Callable, extra_params: dict
|
|
|
|
) -> Callable[..., Awaitable]:
|
2024-11-21 17:41:35 +00:00
|
|
|
sig = inspect.signature(function)
|
|
|
|
extra_params = {k: v for k, v in extra_params.items() if k in sig.parameters}
|
2024-11-21 17:19:56 +00:00
|
|
|
partial_func = partial(function, **extra_params)
|
|
|
|
if inspect.iscoroutinefunction(function):
|
|
|
|
update_wrapper(partial_func, function)
|
|
|
|
return partial_func
|
2024-08-19 09:53:12 +00:00
|
|
|
|
2024-11-21 17:19:56 +00:00
|
|
|
async def new_function(*args, **kwargs):
|
|
|
|
return partial_func(*args, **kwargs)
|
|
|
|
|
|
|
|
update_wrapper(new_function, function)
|
2024-08-19 09:53:12 +00:00
|
|
|
return new_function
|
|
|
|
|
|
|
|
|
|
|
|
# Mutation on extra_params
|
|
|
|
def get_tools(
|
|
|
|
webui_app, tool_ids: list[str], user: UserModel, extra_params: dict
|
|
|
|
) -> dict[str, dict]:
|
2024-11-17 02:31:13 +00:00
|
|
|
tools_dict = {}
|
|
|
|
|
2024-08-19 09:53:12 +00:00
|
|
|
for tool_id in tool_ids:
|
2024-11-17 02:31:13 +00:00
|
|
|
tools = Tools.get_tool_by_id(tool_id)
|
|
|
|
if tools is None:
|
2024-08-19 09:53:12 +00:00
|
|
|
continue
|
|
|
|
|
|
|
|
module = webui_app.state.TOOLS.get(tool_id, None)
|
|
|
|
if module is None:
|
2024-11-17 01:54:38 +00:00
|
|
|
module, _ = load_tools_module_by_id(tool_id)
|
2024-08-19 09:53:12 +00:00
|
|
|
webui_app.state.TOOLS[tool_id] = module
|
|
|
|
|
|
|
|
extra_params["__id__"] = tool_id
|
|
|
|
if hasattr(module, "valves") and hasattr(module, "Valves"):
|
|
|
|
valves = Tools.get_tool_valves_by_id(tool_id) or {}
|
|
|
|
module.valves = module.Valves(**valves)
|
|
|
|
|
|
|
|
if hasattr(module, "UserValves"):
|
|
|
|
extra_params["__user__"]["valves"] = module.UserValves( # type: ignore
|
|
|
|
**Tools.get_user_valves_by_id_and_user_id(tool_id, user.id)
|
|
|
|
)
|
|
|
|
|
2024-11-17 02:31:13 +00:00
|
|
|
for spec in tools.specs:
|
|
|
|
# Remove internal parameters
|
|
|
|
spec["parameters"]["properties"] = {
|
|
|
|
key: val
|
|
|
|
for key, val in spec["parameters"]["properties"].items()
|
|
|
|
if not key.startswith("__")
|
|
|
|
}
|
|
|
|
|
2024-08-19 09:53:12 +00:00
|
|
|
function_name = spec["name"]
|
|
|
|
|
|
|
|
# convert to function that takes only model params and inserts custom params
|
2024-08-19 15:27:21 +00:00
|
|
|
original_func = getattr(module, function_name)
|
|
|
|
callable = apply_extra_params_to_tool_function(original_func, extra_params)
|
2024-08-19 09:53:12 +00:00
|
|
|
# TODO: This needs to be a pydantic model
|
|
|
|
tool_dict = {
|
|
|
|
"toolkit_id": tool_id,
|
|
|
|
"callable": callable,
|
|
|
|
"spec": spec,
|
2024-11-21 17:19:56 +00:00
|
|
|
"pydantic_model": function_to_pydantic_model(callable),
|
2024-08-19 09:53:12 +00:00
|
|
|
"file_handler": hasattr(module, "file_handler") and module.file_handler,
|
|
|
|
"citation": hasattr(module, "citation") and module.citation,
|
|
|
|
}
|
|
|
|
|
|
|
|
# TODO: if collision, prepend toolkit name
|
2024-11-17 02:31:13 +00:00
|
|
|
if function_name in tools_dict:
|
|
|
|
log.warning(f"Tool {function_name} already exists in another tools!")
|
|
|
|
log.warning(f"Collision between {tools} and {tool_id}.")
|
|
|
|
log.warning(f"Discarding {tools}.{function_name}")
|
2024-08-19 09:53:12 +00:00
|
|
|
else:
|
2024-11-17 02:31:13 +00:00
|
|
|
tools_dict[function_name] = tool_dict
|
|
|
|
|
|
|
|
return tools_dict
|
2024-06-11 03:39:55 +00:00
|
|
|
|
|
|
|
|
2024-11-21 17:19:56 +00:00
|
|
|
def parse_docstring(docstring):
|
|
|
|
"""
|
|
|
|
Parse a function's docstring to extract parameter descriptions in reST format.
|
|
|
|
|
|
|
|
Args:
|
|
|
|
docstring (str): The docstring to parse.
|
|
|
|
|
|
|
|
Returns:
|
|
|
|
dict: A dictionary where keys are parameter names and values are descriptions.
|
|
|
|
"""
|
|
|
|
if not docstring:
|
|
|
|
return {}
|
|
|
|
|
|
|
|
# Regex to match `:param name: description` format
|
|
|
|
param_pattern = re.compile(r":param (\w+):\s*(.+)")
|
|
|
|
param_descriptions = {}
|
|
|
|
|
|
|
|
for line in docstring.splitlines():
|
|
|
|
match = param_pattern.match(line.strip())
|
2024-11-22 20:51:16 +00:00
|
|
|
if not match:
|
|
|
|
continue
|
|
|
|
param_name, param_description = match.groups()
|
|
|
|
if param_name.startswith("__"):
|
|
|
|
continue
|
|
|
|
param_descriptions[param_name] = param_description
|
2024-11-21 17:19:56 +00:00
|
|
|
|
|
|
|
return param_descriptions
|
2024-06-11 03:39:55 +00:00
|
|
|
|
|
|
|
|
2024-11-21 17:19:56 +00:00
|
|
|
def function_to_pydantic_model(func: Callable) -> type[BaseModel]:
|
|
|
|
"""
|
|
|
|
Converts a Python function's type hints and docstring to a Pydantic model,
|
|
|
|
including support for nested types, default values, and descriptions.
|
2024-06-11 03:39:55 +00:00
|
|
|
|
2024-11-21 17:19:56 +00:00
|
|
|
Args:
|
|
|
|
func: The function whose type hints and docstring should be converted.
|
|
|
|
model_name: The name of the generated Pydantic model.
|
|
|
|
|
|
|
|
Returns:
|
|
|
|
A Pydantic model class.
|
|
|
|
"""
|
|
|
|
type_hints = get_type_hints(func)
|
|
|
|
signature = inspect.signature(func)
|
|
|
|
parameters = signature.parameters
|
|
|
|
|
|
|
|
docstring = func.__doc__
|
|
|
|
descriptions = parse_docstring(docstring)
|
|
|
|
|
|
|
|
field_defs = {}
|
|
|
|
for name, param in parameters.items():
|
|
|
|
type_hint = type_hints.get(name, Any)
|
|
|
|
default_value = param.default if param.default is not param.empty else ...
|
|
|
|
description = descriptions.get(name, None)
|
|
|
|
if not description:
|
|
|
|
field_defs[name] = type_hint, default_value
|
|
|
|
continue
|
|
|
|
field_defs[name] = type_hint, Field(default_value, description=description)
|
|
|
|
|
|
|
|
return create_model(func.__name__, **field_defs)
|
|
|
|
|
|
|
|
|
|
|
|
def get_callable_attributes(tool: object) -> list[Callable]:
|
|
|
|
return [
|
|
|
|
getattr(tool, func)
|
|
|
|
for func in dir(tool)
|
|
|
|
if callable(getattr(tool, func))
|
2024-06-22 09:29:22 +00:00
|
|
|
and not func.startswith("__")
|
2024-11-21 17:19:56 +00:00
|
|
|
and not inspect.isclass(getattr(tool, func))
|
2024-06-11 03:39:55 +00:00
|
|
|
]
|
|
|
|
|
|
|
|
|
2024-11-21 17:19:56 +00:00
|
|
|
def get_tools_specs(tool_class: object) -> list[dict]:
|
|
|
|
function_list = get_callable_attributes(tool_class)
|
|
|
|
models = map(function_to_pydantic_model, function_list)
|
|
|
|
return [convert_to_openai_function(tool) for tool in models]
|