2024-09-07 02:09:57 +00:00
|
|
|
from open_webui.utils.task import prompt_template
|
|
|
|
from open_webui.utils.misc import (
|
|
|
|
add_or_update_system_message,
|
|
|
|
)
|
|
|
|
|
|
|
|
from typing import Callable, Optional
|
|
|
|
|
|
|
|
|
|
|
|
# inplace function: form_data is modified
|
|
|
|
def apply_model_system_prompt_to_body(params: dict, form_data: dict, user) -> dict:
|
|
|
|
system = params.get("system", None)
|
|
|
|
if not system:
|
|
|
|
return form_data
|
|
|
|
|
|
|
|
if user:
|
|
|
|
template_params = {
|
|
|
|
"user_name": user.name,
|
|
|
|
"user_location": user.info.get("location") if user.info else None,
|
|
|
|
}
|
|
|
|
else:
|
|
|
|
template_params = {}
|
|
|
|
system = prompt_template(system, **template_params)
|
|
|
|
form_data["messages"] = add_or_update_system_message(
|
|
|
|
system, form_data.get("messages", [])
|
|
|
|
)
|
|
|
|
return form_data
|
|
|
|
|
|
|
|
|
|
|
|
# inplace function: form_data is modified
|
|
|
|
def apply_model_params_to_body(
|
|
|
|
params: dict, form_data: dict, mappings: dict[str, Callable]
|
|
|
|
) -> dict:
|
|
|
|
if not params:
|
|
|
|
return form_data
|
|
|
|
|
|
|
|
for key, cast_func in mappings.items():
|
|
|
|
if (value := params.get(key)) is not None:
|
|
|
|
form_data[key] = cast_func(value)
|
|
|
|
|
|
|
|
return form_data
|
|
|
|
|
|
|
|
|
|
|
|
# inplace function: form_data is modified
|
|
|
|
def apply_model_params_to_body_openai(params: dict, form_data: dict) -> dict:
|
|
|
|
mappings = {
|
|
|
|
"temperature": float,
|
2024-09-08 15:52:58 +00:00
|
|
|
"top_p": float,
|
2024-09-07 02:09:57 +00:00
|
|
|
"max_tokens": int,
|
2024-09-08 15:52:58 +00:00
|
|
|
"frequency_penalty": float,
|
2024-09-07 02:09:57 +00:00
|
|
|
"seed": lambda x: x,
|
|
|
|
"stop": lambda x: [bytes(s, "utf-8").decode("unicode_escape") for s in x],
|
|
|
|
}
|
|
|
|
return apply_model_params_to_body(params, form_data, mappings)
|
|
|
|
|
|
|
|
|
|
|
|
def apply_model_params_to_body_ollama(params: dict, form_data: dict) -> dict:
|
|
|
|
opts = [
|
|
|
|
"temperature",
|
|
|
|
"top_p",
|
|
|
|
"seed",
|
|
|
|
"mirostat",
|
|
|
|
"mirostat_eta",
|
|
|
|
"mirostat_tau",
|
|
|
|
"num_ctx",
|
|
|
|
"num_batch",
|
|
|
|
"num_keep",
|
|
|
|
"repeat_last_n",
|
|
|
|
"tfs_z",
|
|
|
|
"top_k",
|
|
|
|
"min_p",
|
|
|
|
"use_mmap",
|
|
|
|
"use_mlock",
|
|
|
|
"num_thread",
|
|
|
|
"num_gpu",
|
|
|
|
]
|
|
|
|
mappings = {i: lambda x: x for i in opts}
|
|
|
|
form_data = apply_model_params_to_body(params, form_data, mappings)
|
|
|
|
|
|
|
|
name_differences = {
|
|
|
|
"max_tokens": "num_predict",
|
|
|
|
"frequency_penalty": "repeat_penalty",
|
|
|
|
}
|
|
|
|
|
|
|
|
for key, value in name_differences.items():
|
|
|
|
if (param := params.get(key, None)) is not None:
|
|
|
|
form_data[value] = param
|
|
|
|
|
|
|
|
return form_data
|