2024-10-30 00:28:37 +00:00
|
|
|
from opensearchpy import OpenSearch
|
|
|
|
from typing import Optional
|
|
|
|
|
|
|
|
from open_webui.apps.rag.vector.main import VectorItem, SearchResult, GetResult
|
|
|
|
from open_webui.config import (
|
2024-11-04 20:14:53 +00:00
|
|
|
OPENSEARCH_URI,
|
|
|
|
OPENSEARCH_SSL,
|
|
|
|
OPENSEARCH_CERT_VERIFY,
|
|
|
|
OPENSEARCH_USERNAME,
|
|
|
|
OPENSEARCH_PASSWORD
|
2024-10-30 00:28:37 +00:00
|
|
|
)
|
|
|
|
|
|
|
|
class OpenSearchClient:
|
|
|
|
def __init__(self):
|
|
|
|
self.index_prefix = "open_webui"
|
|
|
|
self.client = OpenSearch(
|
2024-11-04 20:14:53 +00:00
|
|
|
hosts=[OPENSEARCH_URI],
|
2024-10-30 00:28:37 +00:00
|
|
|
use_ssl=OPENSEARCH_SSL,
|
|
|
|
verify_certs=OPENSEARCH_CERT_VERIFY,
|
2024-11-04 20:14:53 +00:00
|
|
|
http_auth=(OPENSEARCH_USERNAME, OPENSEARCH_PASSWORD),
|
2024-10-30 00:28:37 +00:00
|
|
|
)
|
|
|
|
|
|
|
|
def _result_to_get_result(self, result) -> GetResult:
|
|
|
|
ids = []
|
|
|
|
documents = []
|
|
|
|
metadatas = []
|
|
|
|
|
|
|
|
for hit in result['hits']['hits']:
|
|
|
|
ids.append(hit['_id'])
|
|
|
|
documents.append(hit['_source'].get("text"))
|
|
|
|
metadatas.append(hit['_source'].get("metadata"))
|
|
|
|
|
|
|
|
return GetResult(ids=ids, documents=documents, metadatas=metadatas)
|
|
|
|
|
|
|
|
def _result_to_search_result(self, result) -> SearchResult:
|
|
|
|
ids = []
|
|
|
|
distances = []
|
|
|
|
documents = []
|
|
|
|
metadatas = []
|
|
|
|
|
|
|
|
for hit in result['hits']['hits']:
|
|
|
|
ids.append(hit['_id'])
|
|
|
|
distances.append(hit['_score'])
|
|
|
|
documents.append(hit['_source'].get("text"))
|
|
|
|
metadatas.append(hit['_source'].get("metadata"))
|
|
|
|
|
|
|
|
return SearchResult(ids=ids, distances=distances, documents=documents, metadatas=metadatas)
|
|
|
|
|
|
|
|
def _create_index(self, index_name: str, dimension: int):
|
|
|
|
body = {
|
|
|
|
"mappings": {
|
|
|
|
"properties": {
|
|
|
|
"id": {"type": "keyword"},
|
|
|
|
"vector": {
|
|
|
|
"type": "dense_vector",
|
|
|
|
"dims": dimension, # Adjust based on your vector dimensions
|
|
|
|
"index": true,
|
|
|
|
"similarity": "faiss",
|
|
|
|
"method": {
|
|
|
|
"name": "hnsw",
|
|
|
|
"space_type": "ip", # Use inner product to approximate cosine similarity
|
|
|
|
"engine": "faiss",
|
|
|
|
"ef_construction": 128,
|
|
|
|
"m": 16
|
|
|
|
}
|
|
|
|
},
|
|
|
|
"text": {"type": "text"},
|
|
|
|
"metadata": {"type": "object"}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
self.client.indices.create(index=f"{self.index_prefix}_{index_name}", body=body)
|
|
|
|
|
|
|
|
def _create_batches(self, items: list[VectorItem], batch_size=100):
|
|
|
|
for i in range(0, len(items), batch_size):
|
|
|
|
yield items[i:i + batch_size]
|
|
|
|
|
|
|
|
def has_collection(self, index_name: str) -> bool:
|
|
|
|
# has_collection here means has index.
|
|
|
|
# We are simply adapting to the norms of the other DBs.
|
|
|
|
return self.client.indices.exists(index=f"{self.index_prefix}_{index_name}")
|
|
|
|
|
|
|
|
def delete_colleciton(self, index_name: str):
|
|
|
|
# delete_collection here means delete index.
|
|
|
|
# We are simply adapting to the norms of the other DBs.
|
|
|
|
self.client.indices.delete(index=f"{self.index_prefix}_{index_name}")
|
|
|
|
|
|
|
|
def search(self, index_name: str, vectors: list[list[float]], limit: int) -> Optional[SearchResult]:
|
|
|
|
query = {
|
|
|
|
"size": limit,
|
|
|
|
"_source": ["text", "metadata"],
|
|
|
|
"query": {
|
|
|
|
"script_score": {
|
|
|
|
"query": {"match_all": {}},
|
|
|
|
"script": {
|
|
|
|
"source": "cosineSimilarity(params.vector, 'vector') + 1.0",
|
|
|
|
"params": {"vector": vectors[0]} # Assuming single query vector
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
result = self.client.search(
|
|
|
|
index=f"{self.index_prefix}_{index_name}",
|
|
|
|
body=query
|
|
|
|
)
|
|
|
|
|
|
|
|
return self._result_to_search_result(result)
|
|
|
|
|
|
|
|
def get_or_create_index(self, index_name: str, dimension: int):
|
|
|
|
if not self.has_index(index_name):
|
|
|
|
self._create_index(index_name, dimension)
|
|
|
|
|
|
|
|
def get(self, index_name: str) -> Optional[GetResult]:
|
|
|
|
query = {
|
|
|
|
"query": {"match_all": {}},
|
|
|
|
"_source": ["text", "metadata"]
|
|
|
|
}
|
|
|
|
|
|
|
|
result = self.client.search(index=f"{self.index_prefix}_{index_name}", body=query)
|
|
|
|
return self._result_to_get_result(result)
|
|
|
|
|
|
|
|
def insert(self, index_name: str, items: list[VectorItem]):
|
|
|
|
if not self.has_index(index_name):
|
|
|
|
self._create_index(index_name, dimension=len(items[0]["vector"]))
|
|
|
|
|
|
|
|
for batch in self._create_batches(items):
|
|
|
|
actions = [
|
|
|
|
{"index": {"_id": item["id"], "_source": {"vector": item["vector"], "text": item["text"], "metadata": item["metadata"]}}}
|
|
|
|
for item in batch
|
|
|
|
]
|
|
|
|
self.client.bulk(actions)
|
|
|
|
|
|
|
|
def upsert(self, index_name: str, items: list[VectorItem]):
|
|
|
|
if not self.has_index(index_name):
|
|
|
|
self._create_index(index_name, dimension=len(items[0]["vector"]))
|
|
|
|
|
|
|
|
for batch in self._create_batches(items):
|
|
|
|
actions = [
|
|
|
|
{"index": {"_id": item["id"], "_source": {"vector": item["vector"], "text": item["text"], "metadata": item["metadata"]}}}
|
|
|
|
for item in batch
|
|
|
|
]
|
|
|
|
self.client.bulk(actions)
|
|
|
|
|
|
|
|
def delete(self, index_name: str, ids: list[str]):
|
|
|
|
actions = [{"delete": {"_index": f"{self.index_prefix}_{index_name}", "_id": id}} for id in ids]
|
|
|
|
self.client.bulk(body=actions)
|
|
|
|
|
|
|
|
def reset(self):
|
|
|
|
indices = self.client.indices.get(index=f"{self.index_prefix}_*")
|
|
|
|
for index in indices:
|
|
|
|
self.client.indices.delete(index=index)
|