nvidia-container-toolkit/vendor/github.com/opencontainers/runc/libcontainer/utils/utils_unix.go
Evan Lezar 5bdf14b1e7
Use libcontainer execseal to run ldconfig
This change copies ldconfig into a memfd before executing it from
the createContainer hook.

Signed-off-by: Evan Lezar <elezar@nvidia.com>
2025-02-28 14:47:31 +02:00

361 lines
13 KiB
Go

//go:build !windows
package utils
import (
"fmt"
"math"
"os"
"path/filepath"
"runtime"
"strconv"
"strings"
"sync"
_ "unsafe" // for go:linkname
securejoin "github.com/cyphar/filepath-securejoin"
"github.com/sirupsen/logrus"
"golang.org/x/sys/unix"
)
// EnsureProcHandle returns whether or not the given file handle is on procfs.
func EnsureProcHandle(fh *os.File) error {
var buf unix.Statfs_t
if err := unix.Fstatfs(int(fh.Fd()), &buf); err != nil {
return fmt.Errorf("ensure %s is on procfs: %w", fh.Name(), err)
}
if buf.Type != unix.PROC_SUPER_MAGIC {
return fmt.Errorf("%s is not on procfs", fh.Name())
}
return nil
}
var (
haveCloseRangeCloexecBool bool
haveCloseRangeCloexecOnce sync.Once
)
func haveCloseRangeCloexec() bool {
haveCloseRangeCloexecOnce.Do(func() {
// Make sure we're not closing a random file descriptor.
tmpFd, err := unix.FcntlInt(0, unix.F_DUPFD_CLOEXEC, 0)
if err != nil {
return
}
defer unix.Close(tmpFd)
err = unix.CloseRange(uint(tmpFd), uint(tmpFd), unix.CLOSE_RANGE_CLOEXEC)
// Any error means we cannot use close_range(CLOSE_RANGE_CLOEXEC).
// -ENOSYS and -EINVAL ultimately mean we don't have support, but any
// other potential error would imply that even the most basic close
// operation wouldn't work.
haveCloseRangeCloexecBool = err == nil
})
return haveCloseRangeCloexecBool
}
type fdFunc func(fd int)
// fdRangeFrom calls the passed fdFunc for each file descriptor that is open in
// the current process.
func fdRangeFrom(minFd int, fn fdFunc) error {
procSelfFd, closer := ProcThreadSelf("fd")
defer closer()
fdDir, err := os.Open(procSelfFd)
if err != nil {
return err
}
defer fdDir.Close()
if err := EnsureProcHandle(fdDir); err != nil {
return err
}
fdList, err := fdDir.Readdirnames(-1)
if err != nil {
return err
}
for _, fdStr := range fdList {
fd, err := strconv.Atoi(fdStr)
// Ignore non-numeric file names.
if err != nil {
continue
}
// Ignore descriptors lower than our specified minimum.
if fd < minFd {
continue
}
// Ignore the file descriptor we used for readdir, as it will be closed
// when we return.
if uintptr(fd) == fdDir.Fd() {
continue
}
// Run the closure.
fn(fd)
}
return nil
}
// CloseExecFrom sets the O_CLOEXEC flag on all file descriptors greater or
// equal to minFd in the current process.
func CloseExecFrom(minFd int) error {
// Use close_range(CLOSE_RANGE_CLOEXEC) if possible.
if haveCloseRangeCloexec() {
err := unix.CloseRange(uint(minFd), math.MaxUint, unix.CLOSE_RANGE_CLOEXEC)
return os.NewSyscallError("close_range", err)
}
// Otherwise, fall back to the standard loop.
return fdRangeFrom(minFd, unix.CloseOnExec)
}
//go:linkname runtime_IsPollDescriptor internal/poll.IsPollDescriptor
// In order to make sure we do not close the internal epoll descriptors the Go
// runtime uses, we need to ensure that we skip descriptors that match
// "internal/poll".IsPollDescriptor. Yes, this is a Go runtime internal thing,
// unfortunately there's no other way to be sure we're only keeping the file
// descriptors the Go runtime needs. Hopefully nothing blows up doing this...
func runtime_IsPollDescriptor(fd uintptr) bool //nolint:revive
// UnsafeCloseFrom closes all file descriptors greater or equal to minFd in the
// current process, except for those critical to Go's runtime (such as the
// netpoll management descriptors).
//
// NOTE: That this function is incredibly dangerous to use in most Go code, as
// closing file descriptors from underneath *os.File handles can lead to very
// bad behaviour (the closed file descriptor can be re-used and then any
// *os.File operations would apply to the wrong file). This function is only
// intended to be called from the last stage of runc init.
func UnsafeCloseFrom(minFd int) error {
// We cannot use close_range(2) even if it is available, because we must
// not close some file descriptors.
return fdRangeFrom(minFd, func(fd int) {
if runtime_IsPollDescriptor(uintptr(fd)) {
// These are the Go runtimes internal netpoll file descriptors.
// These file descriptors are operated on deep in the Go scheduler,
// and closing those files from underneath Go can result in panics.
// There is no issue with keeping them because they are not
// executable and are not useful to an attacker anyway. Also we
// don't have any choice.
return
}
// There's nothing we can do about errors from close(2), and the
// only likely error to be seen is EBADF which indicates the fd was
// already closed (in which case, we got what we wanted).
_ = unix.Close(fd)
})
}
// NewSockPair returns a new SOCK_STREAM unix socket pair.
func NewSockPair(name string) (parent, child *os.File, err error) {
fds, err := unix.Socketpair(unix.AF_LOCAL, unix.SOCK_STREAM|unix.SOCK_CLOEXEC, 0)
if err != nil {
return nil, nil, err
}
return os.NewFile(uintptr(fds[1]), name+"-p"), os.NewFile(uintptr(fds[0]), name+"-c"), nil
}
// WithProcfd runs the passed closure with a procfd path (/proc/self/fd/...)
// corresponding to the unsafePath resolved within the root. Before passing the
// fd, this path is verified to have been inside the root -- so operating on it
// through the passed fdpath should be safe. Do not access this path through
// the original path strings, and do not attempt to use the pathname outside of
// the passed closure (the file handle will be freed once the closure returns).
func WithProcfd(root, unsafePath string, fn func(procfd string) error) error {
// Remove the root then forcefully resolve inside the root.
unsafePath = stripRoot(root, unsafePath)
path, err := securejoin.SecureJoin(root, unsafePath)
if err != nil {
return fmt.Errorf("resolving path inside rootfs failed: %w", err)
}
procSelfFd, closer := ProcThreadSelf("fd/")
defer closer()
// Open the target path.
fh, err := os.OpenFile(path, unix.O_PATH|unix.O_CLOEXEC, 0)
if err != nil {
return fmt.Errorf("open o_path procfd: %w", err)
}
defer fh.Close()
procfd := filepath.Join(procSelfFd, strconv.Itoa(int(fh.Fd())))
// Double-check the path is the one we expected.
if realpath, err := os.Readlink(procfd); err != nil {
return fmt.Errorf("procfd verification failed: %w", err)
} else if realpath != path {
return fmt.Errorf("possibly malicious path detected -- refusing to operate on %s", realpath)
}
return fn(procfd)
}
type ProcThreadSelfCloser func()
var (
haveProcThreadSelf bool
haveProcThreadSelfOnce sync.Once
)
// ProcThreadSelf returns a string that is equivalent to
// /proc/thread-self/<subpath>, with a graceful fallback on older kernels where
// /proc/thread-self doesn't exist. This method DOES NOT use SecureJoin,
// meaning that the passed string needs to be trusted. The caller _must_ call
// the returned procThreadSelfCloser function (which is runtime.UnlockOSThread)
// *only once* after it has finished using the returned path string.
func ProcThreadSelf(subpath string) (string, ProcThreadSelfCloser) {
haveProcThreadSelfOnce.Do(func() {
if _, err := os.Stat("/proc/thread-self/"); err == nil {
haveProcThreadSelf = true
} else {
logrus.Debugf("cannot stat /proc/thread-self (%v), falling back to /proc/self/task/<tid>", err)
}
})
// We need to lock our thread until the caller is done with the path string
// because any non-atomic operation on the path (such as opening a file,
// then reading it) could be interrupted by the Go runtime where the
// underlying thread is swapped out and the original thread is killed,
// resulting in pull-your-hair-out-hard-to-debug issues in the caller. In
// addition, the pre-3.17 fallback makes everything non-atomic because the
// same thing could happen between unix.Gettid() and the path operations.
//
// In theory, we don't need to lock in the atomic user case when using
// /proc/thread-self/, but it's better to be safe than sorry (and there are
// only one or two truly atomic users of /proc/thread-self/).
runtime.LockOSThread()
threadSelf := "/proc/thread-self/"
if !haveProcThreadSelf {
// Pre-3.17 kernels did not have /proc/thread-self, so do it manually.
threadSelf = "/proc/self/task/" + strconv.Itoa(unix.Gettid()) + "/"
if _, err := os.Stat(threadSelf); err != nil {
// Unfortunately, this code is called from rootfs_linux.go where we
// are running inside the pid namespace of the container but /proc
// is the host's procfs. Unfortunately there is no real way to get
// the correct tid to use here (the kernel age means we cannot do
// things like set up a private fsopen("proc") -- even scanning
// NSpid in all of the tasks in /proc/self/task/*/status requires
// Linux 4.1).
//
// So, we just have to assume that /proc/self is acceptable in this
// one specific case.
if os.Getpid() == 1 {
logrus.Debugf("/proc/thread-self (tid=%d) cannot be emulated inside the initial container setup -- using /proc/self instead: %v", unix.Gettid(), err)
} else {
// This should never happen, but the fallback should work in most cases...
logrus.Warnf("/proc/thread-self could not be emulated for pid=%d (tid=%d) -- using more buggy /proc/self fallback instead: %v", os.Getpid(), unix.Gettid(), err)
}
threadSelf = "/proc/self/"
}
}
return threadSelf + subpath, runtime.UnlockOSThread
}
// ProcThreadSelfFd is small wrapper around ProcThreadSelf to make it easier to
// create a /proc/thread-self handle for given file descriptor.
//
// It is basically equivalent to ProcThreadSelf(fmt.Sprintf("fd/%d", fd)), but
// without using fmt.Sprintf to avoid unneeded overhead.
func ProcThreadSelfFd(fd uintptr) (string, ProcThreadSelfCloser) {
return ProcThreadSelf("fd/" + strconv.FormatUint(uint64(fd), 10))
}
// IsLexicallyInRoot is shorthand for strings.HasPrefix(path+"/", root+"/"),
// but properly handling the case where path or root are "/".
//
// NOTE: The return value only make sense if the path doesn't contain "..".
func IsLexicallyInRoot(root, path string) bool {
if root != "/" {
root += "/"
}
if path != "/" {
path += "/"
}
return strings.HasPrefix(path, root)
}
// MkdirAllInRootOpen attempts to make
//
// path, _ := securejoin.SecureJoin(root, unsafePath)
// os.MkdirAll(path, mode)
// os.Open(path)
//
// safer against attacks where components in the path are changed between
// SecureJoin returning and MkdirAll (or Open) being called. In particular, we
// try to detect any symlink components in the path while we are doing the
// MkdirAll.
//
// NOTE: If unsafePath is a subpath of root, we assume that you have already
// called SecureJoin and so we use the provided path verbatim without resolving
// any symlinks (this is done in a way that avoids symlink-exchange races).
// This means that the path also must not contain ".." elements, otherwise an
// error will occur.
//
// This uses securejoin.MkdirAllHandle under the hood, but it has special
// handling if unsafePath has already been scoped within the rootfs (this is
// needed for a lot of runc callers and fixing this would require reworking a
// lot of path logic).
func MkdirAllInRootOpen(root, unsafePath string, mode os.FileMode) (_ *os.File, Err error) {
// If the path is already "within" the root, get the path relative to the
// root and use that as the unsafe path. This is necessary because a lot of
// MkdirAllInRootOpen callers have already done SecureJoin, and refactoring
// all of them to stop using these SecureJoin'd paths would require a fair
// amount of work.
// TODO(cyphar): Do the refactor to libpathrs once it's ready.
if IsLexicallyInRoot(root, unsafePath) {
subPath, err := filepath.Rel(root, unsafePath)
if err != nil {
return nil, err
}
unsafePath = subPath
}
// Check for any silly mode bits.
if mode&^0o7777 != 0 {
return nil, fmt.Errorf("tried to include non-mode bits in MkdirAll mode: 0o%.3o", mode)
}
// Linux (and thus os.MkdirAll) silently ignores the suid and sgid bits if
// passed. While it would make sense to return an error in that case (since
// the user has asked for a mode that won't be applied), for compatibility
// reasons we have to ignore these bits.
if ignoredBits := mode &^ 0o1777; ignoredBits != 0 {
logrus.Warnf("MkdirAll called with no-op mode bits that are ignored by Linux: 0o%.3o", ignoredBits)
mode &= 0o1777
}
rootDir, err := os.OpenFile(root, unix.O_DIRECTORY|unix.O_CLOEXEC, 0)
if err != nil {
return nil, fmt.Errorf("open root handle: %w", err)
}
defer rootDir.Close()
return securejoin.MkdirAllHandle(rootDir, unsafePath, mode)
}
// MkdirAllInRoot is a wrapper around MkdirAllInRootOpen which closes the
// returned handle, for callers that don't need to use it.
func MkdirAllInRoot(root, unsafePath string, mode os.FileMode) error {
f, err := MkdirAllInRootOpen(root, unsafePath, mode)
if err == nil {
_ = f.Close()
}
return err
}
// Openat is a Go-friendly openat(2) wrapper.
func Openat(dir *os.File, path string, flags int, mode uint32) (*os.File, error) {
dirFd := unix.AT_FDCWD
if dir != nil {
dirFd = int(dir.Fd())
}
flags |= unix.O_CLOEXEC
fd, err := unix.Openat(dirFd, path, flags, mode)
if err != nil {
return nil, &os.PathError{Op: "openat", Path: path, Err: err}
}
return os.NewFile(uintptr(fd), dir.Name()+"/"+path), nil
}