mirror of
https://github.com/NVIDIA/nvidia-container-toolkit
synced 2024-11-23 00:38:26 +00:00
49 lines
1.1 KiB
Go
49 lines
1.1 KiB
Go
|
package smetrics
|
||
|
|
||
|
// The Wagner-Fischer algorithm for calculating the Levenshtein distance.
|
||
|
// The first two parameters are the two strings to be compared. The last three parameters are the insertion cost, the deletion cost and the substitution cost. These are normally defined as 1, 1 and 2 respectively.
|
||
|
func WagnerFischer(a, b string, icost, dcost, scost int) int {
|
||
|
|
||
|
// Allocate both rows.
|
||
|
row1 := make([]int, len(b)+1)
|
||
|
row2 := make([]int, len(b)+1)
|
||
|
var tmp []int
|
||
|
|
||
|
// Initialize the first row.
|
||
|
for i := 1; i <= len(b); i++ {
|
||
|
row1[i] = i * icost
|
||
|
}
|
||
|
|
||
|
// For each row...
|
||
|
for i := 1; i <= len(a); i++ {
|
||
|
row2[0] = i * dcost
|
||
|
|
||
|
// For each column...
|
||
|
for j := 1; j <= len(b); j++ {
|
||
|
if a[i-1] == b[j-1] {
|
||
|
row2[j] = row1[j-1]
|
||
|
} else {
|
||
|
ins := row2[j-1] + icost
|
||
|
del := row1[j] + dcost
|
||
|
sub := row1[j-1] + scost
|
||
|
|
||
|
if ins < del && ins < sub {
|
||
|
row2[j] = ins
|
||
|
} else if del < sub {
|
||
|
row2[j] = del
|
||
|
} else {
|
||
|
row2[j] = sub
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
// Swap the rows at the end of each row.
|
||
|
tmp = row1
|
||
|
row1 = row2
|
||
|
row2 = tmp
|
||
|
}
|
||
|
|
||
|
// Because we swapped the rows, the final result is in row1 instead of row2.
|
||
|
return row1[len(row1)-1]
|
||
|
}
|