mirror of
https://github.com/gpt-omni/mini-omni
synced 2024-11-25 05:21:39 +00:00
147 lines
4.7 KiB
Python
147 lines
4.7 KiB
Python
import torch
|
|
import time
|
|
import numpy as np
|
|
|
|
|
|
class SnacConfig:
|
|
audio_vocab_size = 4096
|
|
padded_vocab_size = 4160
|
|
end_of_audio = 4097
|
|
|
|
|
|
snac_config = SnacConfig()
|
|
|
|
|
|
def get_time_str():
|
|
time_str = time.strftime("%Y%m%d_%H%M%S", time.localtime())
|
|
return time_str
|
|
|
|
|
|
def layershift(input_id, layer, stride=4160, shift=152000):
|
|
return input_id + shift + layer * stride
|
|
|
|
|
|
def generate_audio_data(snac_tokens, snacmodel, device=None):
|
|
audio = reconstruct_tensors(snac_tokens, device)
|
|
with torch.inference_mode():
|
|
audio_hat = snacmodel.decode(audio)
|
|
audio_data = audio_hat.cpu().numpy().astype(np.float64) * 32768.0
|
|
audio_data = audio_data.astype(np.int16)
|
|
audio_data = audio_data.tobytes()
|
|
return audio_data
|
|
|
|
|
|
def get_snac(list_output, index, nums_generate):
|
|
|
|
snac = []
|
|
start = index
|
|
for i in range(nums_generate):
|
|
snac.append("#")
|
|
for j in range(7):
|
|
snac.append(list_output[j][start - nums_generate - 5 + j + i])
|
|
return snac
|
|
|
|
|
|
def reconscruct_snac(output_list):
|
|
if len(output_list) == 8:
|
|
output_list = output_list[:-1]
|
|
output = []
|
|
for i in range(7):
|
|
output_list[i] = output_list[i][i + 1 :]
|
|
for i in range(len(output_list[-1])):
|
|
output.append("#")
|
|
for j in range(7):
|
|
output.append(output_list[j][i])
|
|
return output
|
|
|
|
|
|
def reconstruct_tensors(flattened_output, device=None):
|
|
"""Reconstructs the list of tensors from the flattened output."""
|
|
|
|
if device is None:
|
|
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
|
|
|
def count_elements_between_hashes(lst):
|
|
try:
|
|
# Find the index of the first '#'
|
|
first_index = lst.index("#")
|
|
# Find the index of the second '#' after the first
|
|
second_index = lst.index("#", first_index + 1)
|
|
# Count the elements between the two indices
|
|
return second_index - first_index - 1
|
|
except ValueError:
|
|
# Handle the case where there aren't enough '#' symbols
|
|
return "List does not contain two '#' symbols"
|
|
|
|
def remove_elements_before_hash(flattened_list):
|
|
try:
|
|
# Find the index of the first '#'
|
|
first_hash_index = flattened_list.index("#")
|
|
# Return the list starting from the first '#'
|
|
return flattened_list[first_hash_index:]
|
|
except ValueError:
|
|
# Handle the case where there is no '#'
|
|
return "List does not contain the symbol '#'"
|
|
|
|
def list_to_torch_tensor(tensor1):
|
|
# Convert the list to a torch tensor
|
|
tensor = torch.tensor(tensor1)
|
|
# Reshape the tensor to have size (1, n)
|
|
tensor = tensor.unsqueeze(0)
|
|
return tensor
|
|
|
|
flattened_output = remove_elements_before_hash(flattened_output)
|
|
codes = []
|
|
tensor1 = []
|
|
tensor2 = []
|
|
tensor3 = []
|
|
tensor4 = []
|
|
|
|
n_tensors = count_elements_between_hashes(flattened_output)
|
|
if n_tensors == 7:
|
|
for i in range(0, len(flattened_output), 8):
|
|
|
|
tensor1.append(flattened_output[i + 1])
|
|
tensor2.append(flattened_output[i + 2])
|
|
tensor3.append(flattened_output[i + 3])
|
|
tensor3.append(flattened_output[i + 4])
|
|
|
|
tensor2.append(flattened_output[i + 5])
|
|
tensor3.append(flattened_output[i + 6])
|
|
tensor3.append(flattened_output[i + 7])
|
|
codes = [
|
|
list_to_torch_tensor(tensor1).to(device),
|
|
list_to_torch_tensor(tensor2).to(device),
|
|
list_to_torch_tensor(tensor3).to(device),
|
|
]
|
|
|
|
if n_tensors == 15:
|
|
for i in range(0, len(flattened_output), 16):
|
|
|
|
tensor1.append(flattened_output[i + 1])
|
|
tensor2.append(flattened_output[i + 2])
|
|
tensor3.append(flattened_output[i + 3])
|
|
tensor4.append(flattened_output[i + 4])
|
|
tensor4.append(flattened_output[i + 5])
|
|
tensor3.append(flattened_output[i + 6])
|
|
tensor4.append(flattened_output[i + 7])
|
|
tensor4.append(flattened_output[i + 8])
|
|
|
|
tensor2.append(flattened_output[i + 9])
|
|
tensor3.append(flattened_output[i + 10])
|
|
tensor4.append(flattened_output[i + 11])
|
|
tensor4.append(flattened_output[i + 12])
|
|
tensor3.append(flattened_output[i + 13])
|
|
tensor4.append(flattened_output[i + 14])
|
|
tensor4.append(flattened_output[i + 15])
|
|
|
|
codes = [
|
|
list_to_torch_tensor(tensor1).to(device),
|
|
list_to_torch_tensor(tensor2).to(device),
|
|
list_to_torch_tensor(tensor3).to(device),
|
|
list_to_torch_tensor(tensor4).to(device),
|
|
]
|
|
|
|
return codes
|
|
|