mirror of
https://github.com/gpt-omni/mini-omni
synced 2024-11-25 05:21:39 +00:00
58 lines
1.7 KiB
Python
58 lines
1.7 KiB
Python
import flask
|
|
import base64
|
|
import tempfile
|
|
import traceback
|
|
from flask import Flask, Response, stream_with_context
|
|
from inference import OmniInference
|
|
|
|
|
|
class OmniChatServer(object):
|
|
def __init__(self, ip='0.0.0.0', port=60808, run_app=True,
|
|
ckpt_dir='./checkpoint', device='cuda:0') -> None:
|
|
server = Flask(__name__)
|
|
# CORS(server, resources=r"/*")
|
|
# server.config["JSON_AS_ASCII"] = False
|
|
|
|
self.client = OmniInference(ckpt_dir, device)
|
|
self.client.warm_up()
|
|
|
|
server.route("/chat", methods=["POST"])(self.chat)
|
|
|
|
if run_app:
|
|
server.run(host=ip, port=port, threaded=False)
|
|
else:
|
|
self.server = server
|
|
|
|
def chat(self) -> Response:
|
|
|
|
req_data = flask.request.get_json()
|
|
try:
|
|
data_buf = req_data["audio"].encode("utf-8")
|
|
data_buf = base64.b64decode(data_buf)
|
|
stream_stride = req_data.get("stream_stride", 4)
|
|
max_tokens = req_data.get("max_tokens", 2048)
|
|
|
|
with tempfile.NamedTemporaryFile(suffix=".wav", delete=False) as f:
|
|
f.write(data_buf)
|
|
audio_generator = self.client.run_AT_batch_stream(f.name, stream_stride, max_tokens)
|
|
return Response(stream_with_context(audio_generator), mimetype="audio/wav")
|
|
except Exception as e:
|
|
print(traceback.format_exc())
|
|
|
|
|
|
# CUDA_VISIBLE_DEVICES=1 gunicorn -w 2 -b 0.0.0.0:60808 'server:create_app()'
|
|
def create_app():
|
|
server = OmniChatServer(run_app=False)
|
|
return server.server
|
|
|
|
|
|
def serve(ip='0.0.0.0', port=60808):
|
|
|
|
OmniChatServer(ip, port=port, run_app=True)
|
|
|
|
|
|
if __name__ == "__main__":
|
|
import fire
|
|
fire.Fire(serve)
|
|
|