mirror of
https://github.com/gpt-omni/mini-omni
synced 2024-11-16 05:03:47 +00:00
264 lines
8.2 KiB
Python
264 lines
8.2 KiB
Python
import sys
|
|
import os
|
|
|
|
sys.path.append(os.path.dirname(os.path.dirname(os.path.abspath(__file__))))
|
|
from utils.vad import get_speech_timestamps, collect_chunks, VadOptions
|
|
|
|
|
|
import streamlit as st
|
|
import wave
|
|
|
|
# from ASR import recognize
|
|
import requests
|
|
import pyaudio
|
|
import numpy as np
|
|
import base64
|
|
import io
|
|
import os
|
|
import time
|
|
import tempfile
|
|
import librosa
|
|
import traceback
|
|
from pydub import AudioSegment
|
|
|
|
|
|
API_URL = os.getenv("API_URL", "http://127.0.0.1:60808/chat")
|
|
|
|
# recording parameters
|
|
IN_FORMAT = pyaudio.paInt16
|
|
IN_CHANNELS = 1
|
|
IN_RATE = 24000
|
|
IN_CHUNK = 1024
|
|
IN_SAMPLE_WIDTH = 2
|
|
VAD_STRIDE = 0.5
|
|
|
|
# playing parameters
|
|
OUT_FORMAT = pyaudio.paInt16
|
|
OUT_CHANNELS = 1
|
|
OUT_RATE = 24000
|
|
OUT_SAMPLE_WIDTH = 2
|
|
OUT_CHUNK = 5760
|
|
|
|
|
|
# Initialize chat history
|
|
if "messages" not in st.session_state:
|
|
st.session_state.messages = []
|
|
|
|
|
|
def run_vad(ori_audio, sr):
|
|
_st = time.time()
|
|
try:
|
|
audio = np.frombuffer(ori_audio, dtype=np.int16)
|
|
audio = audio.astype(np.float32) / 32768.0
|
|
sampling_rate = 16000
|
|
if sr != sampling_rate:
|
|
audio = librosa.resample(audio, orig_sr=sr, target_sr=sampling_rate)
|
|
|
|
vad_parameters = {}
|
|
vad_parameters = VadOptions(**vad_parameters)
|
|
speech_chunks = get_speech_timestamps(audio, vad_parameters)
|
|
audio = collect_chunks(audio, speech_chunks)
|
|
duration_after_vad = audio.shape[0] / sampling_rate
|
|
|
|
if sr != sampling_rate:
|
|
# resample to original sampling rate
|
|
vad_audio = librosa.resample(audio, orig_sr=sampling_rate, target_sr=sr)
|
|
else:
|
|
vad_audio = audio
|
|
vad_audio = np.round(vad_audio * 32768.0).astype(np.int16)
|
|
vad_audio_bytes = vad_audio.tobytes()
|
|
|
|
return duration_after_vad, vad_audio_bytes, round(time.time() - _st, 4)
|
|
except Exception as e:
|
|
msg = f"[asr vad error] audio_len: {len(ori_audio)/(sr*2):.3f} s, trace: {traceback.format_exc()}"
|
|
print(msg)
|
|
return -1, ori_audio, round(time.time() - _st, 4)
|
|
|
|
|
|
def warm_up():
|
|
frames = b"\x00\x00" * 1024 * 2 # 1024 frames of 2 bytes each
|
|
dur, frames, tcost = run_vad(frames, 16000)
|
|
print(f"warm up done, time_cost: {tcost:.3f} s")
|
|
|
|
|
|
def save_tmp_audio(audio_bytes):
|
|
with tempfile.NamedTemporaryFile(suffix=".wav", delete=False) as tmpfile:
|
|
file_name = tmpfile.name
|
|
audio = AudioSegment(
|
|
data=audio_bytes,
|
|
sample_width=OUT_SAMPLE_WIDTH,
|
|
frame_rate=OUT_RATE,
|
|
channels=OUT_CHANNELS,
|
|
)
|
|
audio.export(file_name, format="wav")
|
|
return file_name
|
|
|
|
|
|
def speaking(status):
|
|
|
|
# Initialize PyAudio
|
|
p = pyaudio.PyAudio()
|
|
|
|
# Open PyAudio stream
|
|
stream = p.open(
|
|
format=OUT_FORMAT, channels=OUT_CHANNELS, rate=OUT_RATE, output=True
|
|
)
|
|
|
|
audio_buffer = io.BytesIO()
|
|
wf = wave.open(audio_buffer, "wb")
|
|
wf.setnchannels(IN_CHANNELS)
|
|
wf.setsampwidth(IN_SAMPLE_WIDTH)
|
|
wf.setframerate(IN_RATE)
|
|
total_frames = b"".join(st.session_state.frames)
|
|
dur = len(total_frames) / (IN_RATE * IN_CHANNELS * IN_SAMPLE_WIDTH)
|
|
status.warning(f"Speaking... recorded audio duration: {dur:.3f} s")
|
|
wf.writeframes(total_frames)
|
|
|
|
with tempfile.NamedTemporaryFile(suffix=".wav", delete=False) as tmpfile:
|
|
with open(tmpfile.name, "wb") as f:
|
|
f.write(audio_buffer.getvalue())
|
|
file_name = tmpfile.name
|
|
with st.chat_message("user"):
|
|
st.audio(file_name, format="audio/wav", loop=False, autoplay=False)
|
|
st.session_state.messages.append(
|
|
{"role": "assistant", "content": file_name, "type": "audio"}
|
|
)
|
|
|
|
st.session_state.frames = []
|
|
|
|
audio_bytes = audio_buffer.getvalue()
|
|
base64_encoded = str(base64.b64encode(audio_bytes), encoding="utf-8")
|
|
files = {"audio": base64_encoded}
|
|
output_audio_bytes = b""
|
|
with requests.post(API_URL, json=files, stream=True) as response:
|
|
try:
|
|
for chunk in response.iter_content(chunk_size=OUT_CHUNK):
|
|
if chunk:
|
|
# Convert chunk to numpy array
|
|
output_audio_bytes += chunk
|
|
audio_data = np.frombuffer(chunk, dtype=np.int8)
|
|
# Play audio
|
|
stream.write(audio_data)
|
|
except Exception as e:
|
|
st.error(f"Error during audio streaming: {e}")
|
|
|
|
out_file = save_tmp_audio(output_audio_bytes)
|
|
with st.chat_message("assistant"):
|
|
st.audio(out_file, format="audio/wav", loop=False, autoplay=False)
|
|
st.session_state.messages.append(
|
|
{"role": "assistant", "content": out_file, "type": "audio"}
|
|
)
|
|
|
|
wf.close()
|
|
# Close PyAudio stream and terminate PyAudio
|
|
stream.stop_stream()
|
|
stream.close()
|
|
p.terminate()
|
|
st.session_state.speaking = False
|
|
st.session_state.recording = True
|
|
|
|
|
|
def recording(status):
|
|
audio = pyaudio.PyAudio()
|
|
|
|
stream = audio.open(
|
|
format=IN_FORMAT,
|
|
channels=IN_CHANNELS,
|
|
rate=IN_RATE,
|
|
input=True,
|
|
frames_per_buffer=IN_CHUNK,
|
|
)
|
|
|
|
temp_audio = b""
|
|
vad_audio = b""
|
|
|
|
start_talking = False
|
|
last_temp_audio = None
|
|
st.session_state.frames = []
|
|
|
|
while st.session_state.recording:
|
|
status.success("Listening...")
|
|
audio_bytes = stream.read(IN_CHUNK)
|
|
temp_audio += audio_bytes
|
|
|
|
if len(temp_audio) > IN_SAMPLE_WIDTH * IN_RATE * IN_CHANNELS * VAD_STRIDE:
|
|
dur_vad, vad_audio_bytes, time_vad = run_vad(temp_audio, IN_RATE)
|
|
|
|
print(f"duration_after_vad: {dur_vad:.3f} s, time_vad: {time_vad:.3f} s")
|
|
|
|
if dur_vad > 0.2 and not start_talking:
|
|
if last_temp_audio is not None:
|
|
st.session_state.frames.append(last_temp_audio)
|
|
start_talking = True
|
|
if start_talking:
|
|
st.session_state.frames.append(temp_audio)
|
|
if dur_vad < 0.1 and start_talking:
|
|
st.session_state.recording = False
|
|
print(f"speech end detected. excit")
|
|
last_temp_audio = temp_audio
|
|
temp_audio = b""
|
|
|
|
stream.stop_stream()
|
|
stream.close()
|
|
|
|
audio.terminate()
|
|
|
|
|
|
def main():
|
|
|
|
st.title("Chat Mini-Omni Demo")
|
|
status = st.empty()
|
|
|
|
if "warm_up" not in st.session_state:
|
|
warm_up()
|
|
st.session_state.warm_up = True
|
|
if "start" not in st.session_state:
|
|
st.session_state.start = False
|
|
if "recording" not in st.session_state:
|
|
st.session_state.recording = False
|
|
if "speaking" not in st.session_state:
|
|
st.session_state.speaking = False
|
|
if "frames" not in st.session_state:
|
|
st.session_state.frames = []
|
|
|
|
if not st.session_state.start:
|
|
status.warning("Click Start to chat")
|
|
|
|
start_col, stop_col, _ = st.columns([0.2, 0.2, 0.6])
|
|
start_button = start_col.button("Start", key="start_button")
|
|
# stop_button = stop_col.button("Stop", key="stop_button")
|
|
if start_button:
|
|
time.sleep(1)
|
|
st.session_state.recording = True
|
|
st.session_state.start = True
|
|
|
|
for message in st.session_state.messages:
|
|
with st.chat_message(message["role"]):
|
|
if message["type"] == "msg":
|
|
st.markdown(message["content"])
|
|
elif message["type"] == "img":
|
|
st.image(message["content"], width=300)
|
|
elif message["type"] == "audio":
|
|
st.audio(
|
|
message["content"], format="audio/wav", loop=False, autoplay=False
|
|
)
|
|
|
|
while st.session_state.start:
|
|
if st.session_state.recording:
|
|
recording(status)
|
|
|
|
if not st.session_state.recording and st.session_state.start:
|
|
st.session_state.speaking = True
|
|
speaking(status)
|
|
|
|
# if stop_button:
|
|
# status.warning("Stopped, click Start to chat")
|
|
# st.session_state.start = False
|
|
# st.session_state.recording = False
|
|
# st.session_state.frames = []
|
|
# break
|
|
|
|
|
|
if __name__ == "__main__":
|
|
main()
|