mirror of
https://github.com/gpt-omni/mini-omni
synced 2024-11-16 05:03:47 +00:00
132 lines
5.1 KiB
Python
132 lines
5.1 KiB
Python
|
# Copyright Lightning AI. Licensed under the Apache License 2.0, see LICENSE file.
|
||
|
|
||
|
import json
|
||
|
from pathlib import Path
|
||
|
from typing import Optional, Union
|
||
|
|
||
|
import torch
|
||
|
|
||
|
|
||
|
class Tokenizer:
|
||
|
def __init__(self, checkpoint_dir: Union[Path, str]) -> None:
|
||
|
checkpoint_dir = Path(checkpoint_dir)
|
||
|
if not checkpoint_dir.exists():
|
||
|
raise NotADirectoryError(
|
||
|
f"The checkpoint directory does not exist: {str(checkpoint_dir)}"
|
||
|
)
|
||
|
|
||
|
self.use_bos = self.check_if_bos_token_used(checkpoint_dir)
|
||
|
self.bos_id = None
|
||
|
self.eos_id = None
|
||
|
|
||
|
# some checkpoints have both files, `.json` takes precedence
|
||
|
if (vocabulary_path := checkpoint_dir / "tokenizer.json").is_file():
|
||
|
from tokenizers import Tokenizer as HFTokenizer
|
||
|
|
||
|
self.processor = HFTokenizer.from_file(str(vocabulary_path))
|
||
|
self.backend = "huggingface"
|
||
|
|
||
|
if (
|
||
|
special_tokens_path := checkpoint_dir / "tokenizer_config.json"
|
||
|
).is_file():
|
||
|
with open(special_tokens_path, encoding="utf-8") as fp:
|
||
|
config = json.load(fp)
|
||
|
bos_token = config.get("bos_token")
|
||
|
eos_token = config.get("eos_token")
|
||
|
if bos_token is not None and isinstance(bos_token, dict):
|
||
|
bos_token = bos_token.get("content")
|
||
|
if eos_token is not None and isinstance(eos_token, dict):
|
||
|
eos_token = eos_token.get("content")
|
||
|
self.bos_id = (
|
||
|
self.token_to_id(bos_token) if bos_token is not None else None
|
||
|
)
|
||
|
self.eos_id = (
|
||
|
self.token_to_id(eos_token) if eos_token is not None else None
|
||
|
)
|
||
|
if (
|
||
|
special_tokens_path := checkpoint_dir / "generation_config.json"
|
||
|
).is_file():
|
||
|
with open(special_tokens_path, encoding="utf-8") as fp:
|
||
|
config = json.load(fp)
|
||
|
if self.bos_id is None:
|
||
|
self.bos_id = config.get("bos_token_id")
|
||
|
if self.eos_id is None:
|
||
|
self.eos_id = config.get("eos_token_id")
|
||
|
|
||
|
elif (vocabulary_path := checkpoint_dir / "tokenizer.model").is_file():
|
||
|
from sentencepiece import SentencePieceProcessor
|
||
|
|
||
|
self.processor = SentencePieceProcessor(model_file=str(vocabulary_path))
|
||
|
self.backend = "sentencepiece"
|
||
|
self.bos_id = self.processor.bos_id()
|
||
|
self.eos_id = self.processor.eos_id()
|
||
|
else:
|
||
|
raise NotImplementedError
|
||
|
|
||
|
@property
|
||
|
def vocab_size(self) -> int:
|
||
|
if self.backend == "huggingface":
|
||
|
return self.processor.get_vocab_size(with_added_tokens=False)
|
||
|
if self.backend == "sentencepiece":
|
||
|
return self.processor.vocab_size()
|
||
|
raise RuntimeError
|
||
|
|
||
|
def token_to_id(self, token: str) -> int:
|
||
|
if self.backend == "huggingface":
|
||
|
id_ = self.processor.token_to_id(token)
|
||
|
elif self.backend == "sentencepiece":
|
||
|
id_ = self.processor.piece_to_id(token)
|
||
|
else:
|
||
|
raise RuntimeError
|
||
|
if id_ is None:
|
||
|
raise ValueError(f"token {token!r} not found in the collection.")
|
||
|
return id_
|
||
|
|
||
|
def check_if_bos_token_used(self, checkpoint_dir: Path) -> bool:
|
||
|
if not (
|
||
|
tokenizer_config_path := checkpoint_dir / "tokenizer_config.json"
|
||
|
).is_file():
|
||
|
return False
|
||
|
with open(tokenizer_config_path, encoding="utf-8") as fp:
|
||
|
config = json.load(fp)
|
||
|
if "add_bos_token" in config:
|
||
|
return config["add_bos_token"]
|
||
|
# if `add_bos_token` isn't in the config file, but LLaMA tokenizer is used - return True.
|
||
|
# ex: https://huggingface.co/stabilityai/StableBeluga2/blob/main/tokenizer_config.json#L2
|
||
|
return config.get("tokenizer_class") == "LlamaTokenizer"
|
||
|
|
||
|
def encode(
|
||
|
self,
|
||
|
string: str,
|
||
|
device: Optional[torch.device] = None,
|
||
|
bos: Optional[bool] = None,
|
||
|
eos: bool = False,
|
||
|
max_length: int = -1,
|
||
|
) -> torch.Tensor:
|
||
|
if self.backend == "huggingface":
|
||
|
tokens = self.processor.encode(string).ids
|
||
|
elif self.backend == "sentencepiece":
|
||
|
tokens = self.processor.encode(string)
|
||
|
else:
|
||
|
raise RuntimeError
|
||
|
if bos or (bos is None and self.use_bos):
|
||
|
bos_id = self.bos_id
|
||
|
if bos_id is None:
|
||
|
raise NotImplementedError(
|
||
|
"This tokenizer does not have a defined a bos token"
|
||
|
)
|
||
|
if tokens[0] != bos_id:
|
||
|
tokens = [bos_id] + tokens
|
||
|
if tokens is None:
|
||
|
raise ValueError("`tokens` is None")
|
||
|
|
||
|
if eos and (not tokens or tokens[-1] != self.eos_id):
|
||
|
tokens = tokens + [self.eos_id]
|
||
|
if max_length > 0:
|
||
|
tokens = tokens[:max_length]
|
||
|
return torch.tensor(tokens, dtype=torch.int, device=device)
|
||
|
|
||
|
def decode(self, tensor: torch.Tensor) -> str:
|
||
|
tokens = [tensor.item()] if tensor.ndim == 0 else tensor.tolist()
|
||
|
return self.processor.decode(tokens)
|