mirror of
https://github.com/hexastack/hexabot
synced 2024-11-29 23:51:27 +00:00
110 lines
3.7 KiB
Python
110 lines
3.7 KiB
Python
# from typing import Union
|
|
import asyncio
|
|
import os
|
|
from typing import Annotated, Union
|
|
from fastapi.responses import JSONResponse
|
|
import boilerplate as tfbp
|
|
from fastapi import Depends, FastAPI, HTTPException, status
|
|
from pydantic import BaseModel
|
|
import logging
|
|
|
|
# Set up logging configuration
|
|
logging.basicConfig(level=logging.DEBUG, format='%(asctime)s - %(levelname)s - %(message)s')
|
|
|
|
AUTH_TOKEN = os.getenv("AUTH_TOKEN", "TOKEN_MUST_BE_DEFINED")
|
|
|
|
AVAILABLE_LANGUAGES = os.getenv("AVAILABLE_LANGUAGES", "en,fr").split(',')
|
|
TFLC_REPO_ID = os.getenv("TFLC_REPO_ID")
|
|
INTENT_CLASSIFIER_REPO_ID = os.getenv("INTENT_CLASSIFIER_REPO_ID")
|
|
SLOT_FILLER_REPO_ID = os.getenv("SLOT_FILLER_REPO_ID")
|
|
|
|
def load_language_classifier():
|
|
# Init language classifier model
|
|
Model = tfbp.get_model("tflc")
|
|
kwargs = {}
|
|
model = Model("", method="predict", repo_id=TFLC_REPO_ID, **kwargs)
|
|
model.load_model()
|
|
logging.info(f'Successfully loaded the language classifier model')
|
|
return model
|
|
|
|
def load_intent_classifiers():
|
|
Model = tfbp.get_model("intent_classifier")
|
|
intent_classifiers = {}
|
|
for language in AVAILABLE_LANGUAGES:
|
|
kwargs = {}
|
|
intent_classifiers[language] = Model(save_dir=language, method="predict", repo_id=INTENT_CLASSIFIER_REPO_ID, **kwargs)
|
|
intent_classifiers[language].load_model()
|
|
logging.info(f'Successfully loaded the intent classifier {language} model')
|
|
return intent_classifiers
|
|
|
|
def load_slot_classifiers():
|
|
Model = tfbp.get_model("slot_classifier")
|
|
slot_fillers = {}
|
|
for language in AVAILABLE_LANGUAGES:
|
|
kwargs = {}
|
|
slot_fillers[language] = Model(save_dir=language, method="predict", repo_id=SLOT_FILLER_REPO_ID, **kwargs)
|
|
slot_fillers[language].load_model()
|
|
logging.info(f'Successfully loaded the slot filler {language} model')
|
|
return slot_fillers
|
|
|
|
|
|
def load_models():
|
|
app.language_classifier = load_language_classifier() # type: ignore
|
|
app.intent_classifiers = load_intent_classifiers() # type: ignore
|
|
app.slot_fillers = load_intent_classifiers() # type: ignore
|
|
|
|
app = FastAPI()
|
|
|
|
|
|
def authenticate(
|
|
token: str
|
|
):
|
|
if token != AUTH_TOKEN:
|
|
raise HTTPException(
|
|
status_code=status.HTTP_401_UNAUTHORIZED,
|
|
detail="Unauthorized access",
|
|
)
|
|
return True
|
|
|
|
|
|
class ParseInput(BaseModel):
|
|
q: str
|
|
project: Union[str, None] = None
|
|
|
|
|
|
@app.on_event("startup")
|
|
async def startup_event():
|
|
asyncio.create_task(asyncio.to_thread(load_models))
|
|
|
|
|
|
@app.get("/health", status_code=200,)
|
|
async def check_health():
|
|
return "Startup checked"
|
|
|
|
|
|
@app.post("/parse")
|
|
def parse(input: ParseInput, is_authenticated: Annotated[str, Depends(authenticate)]):
|
|
if not hasattr(app, 'language_classifier') or not hasattr(app, 'intent_classifiers') or not hasattr(app, 'slot_fillers'):
|
|
headers = {"Retry-After": "120"} # Suggest retrying after 2 minutes
|
|
return JSONResponse(status_code=status.HTTP_503_SERVICE_UNAVAILABLE, content={"message": "Models are still loading, please retry later."}, headers=headers)
|
|
|
|
language_prediction = app.language_classifier.get_prediction(input.q) # type: ignore
|
|
language = language_prediction.get("value")
|
|
intent_prediction = app.intent_classifiers[language].get_prediction(
|
|
input.q) # type: ignore
|
|
slot_prediction = app.slot_fillers[language].get_prediction(
|
|
input.q) # type: ignore
|
|
|
|
if slot_prediction.get("entities"):
|
|
entities = slot_prediction.get("entities")
|
|
else:
|
|
entities = []
|
|
|
|
entities.append(language_prediction)
|
|
|
|
return {
|
|
"text": input.q,
|
|
"intent": intent_prediction.get("intent"),
|
|
"entities": entities,
|
|
}
|