hexabot/nlu/utils/jisf_data_mapper.py
2024-09-10 10:50:11 +01:00

92 lines
3.1 KiB
Python

from .json_helper import JsonHelper
"""
Transform data set from Rasa structure to a compliant one
How to use:
from utils.jisf_data_mapper import JisfDataMapper
mapper = JisfDataMapper()
#mapper.transform_to_new("train.json")
mapper.transform_to_new("test.json")
"""
class JisfDataMapper(object):
def transform_to_new(self, filename: str, reverse: bool = False):
"""this method allows for changing a file's data format."""
helper=JsonHelper()
data = helper.read_dataset_json_file(filename)
copy_file = "copy of "+filename
# we create a copy of the old data format
helper.write_dataset_json_file(data, copy_file)
# alternatively, we could use this method in the opposite direction
if not reverse:
data = self.old_to_new(data)
else:
data = self.new_to_old(data)
helper.write_dataset_json_file(data, filename)
def old_to_new(self,data:dict):
converted_data=dict()
converted_data["common_examples"]=[]
all_intents=set()
all_slots=dict()
for k in data.keys():
common_example=dict()
#text and intent are the same in both formats
common_example["text"]=data[k]["text"]
common_example["intent"]=data[k]["intent"]
common_example["entities"]=[]
all_intents.add(common_example["intent"])
#for every entity, we get its corresponding value as well as the index of its
#start and finish
for slot in data[k]["slots"].keys():
all_slots[slot]=all_slots.get(slot,set())
entity=dict()
entity["entity"]=slot
entity["value"]=data[k]["slots"][slot]
all_slots[slot].add(entity["value"])
entity["start"],entity["end"]=tuple(data[k]["positions"][slot])
common_example["entities"].append(entity)
converted_data["common_examples"].append(common_example)
#lookup tables store all the intents as well as all the slot values seen in the dataset
converted_data["lookup_tables"]=[]
all_slots["intent"]=all_intents
for name,value in all_slots.items():
converted_data["lookup_tables"].append({"name":name,"elements":list(value)})
#regex features and entity synonyms will remain empty for now
converted_data["regex_features"]=[]
converted_data["entity_synonyms"]=[]
return converted_data
def new_to_old(self,data:dict):
old_data=dict()
dataset=data["common_examples"]
#for each piece of text, we make a JSON object.
for i in range(len(dataset)):
item=dict()
item["text"]=dataset[i]["text"]
item["intent"]=dataset[i]["intent"]
item["slots"]=dict()
item["positions"]=dict()
for entity in dataset[i]["entities"]:
item["slots"][entity["entity"]]=entity["value"]
item["positions"][entity["entity"]]=[entity["start"],entity["end"]]
old_data[i]=item
return old_data