hexabot/nlu/data_loaders/tflcdl.py
2024-09-10 10:50:11 +01:00

139 lines
6.0 KiB
Python

from sklearn.calibration import LabelEncoder
import boilerplate as tfbp
from sklearn.preprocessing import OneHotEncoder
from sklearn.feature_extraction.text import TfidfVectorizer
import re
import numpy as np
from typing import Any, Tuple, Dict, List
import os
import joblib
from utils.json_helper import JsonHelper
# TFLC (Term Frequency based Language Classifier) Data Loader
class TFLCDL(tfbp.DataLoader):
default_hparams: Dict[str, Any] = {"ngram_range": (3, 3), "test_size": .2}
# We need to store the fitted preprocessing objects so that we can transform the
# test and predict sets properly.
_save_dir: str
tfidf: TfidfVectorizer
one_hot_encoder: OneHotEncoder
label_encoder: LabelEncoder
language_names: List[str]
json_helper: JsonHelper
def __init__(self, method=None, save_dir=None, **hparams):
super().__init__(method, **hparams)
self.json_helper = JsonHelper("tflc")
self._save_dir = save_dir
print(hparams)
# We will opt for a TF-IDF representation of the data as the frequency of word
# roots should give us a good idea about which language we're dealing with.
if method == "fit":
self.tfidf = TfidfVectorizer(analyzer="char_wb",
ngram_range=tuple(self.hparams.ngram_range))
else:
if self._save_dir is not None and os.path.isfile(os.path.join(self._save_dir, "tfidf_vectorizer.joblib")):
self.tfidf = joblib.load(os.path.join(self._save_dir, 'tfidf_vectorizer.joblib'))
else:
raise ValueError(f'Unable to load tfidf in {self._save_dir} ')
def strip_numbers(self, text: str):
return re.sub(r'[0-9]{2,}', '', text.lower())
def get_texts_and_languages(self, dataset: List[dict]):
""" Extracts the text and the language label from the text's JSON object"""
texts = []
languages = []
for item in dataset:
# An item is a JSON object that has text, entities among its keys.
language = ""
entities: List[dict] = item.get("entities", [])
# There can only be at most 1 language for a single piece of text.
# The entity we choose has to have "language as the name like this
# { "name":"language","value":"fr","start":-1,"end":-1 }
language_entities = list(filter(lambda entity: "language" in entity.values(),
entities))
if language_entities:
language = language_entities[0]["value"]
# Numbers and capital letters don't provide information about the language
# so it's better to not have them.
if language:
text = self.strip_numbers(item["text"])
texts.append(text)
languages.append(language)
return texts, languages
def preprocess_train_dataset(self) -> Tuple[np.ndarray, np.ndarray]:
"""Preprocessing the training set and fitting the proprocess steps in the process"""
json = self.json_helper.read_dataset_json_file("train.json")
dataset = json["common_examples"]
# If a sentence has a language label, we include it in our dataset
# Otherwise, we discard it.
texts, languages = self.get_texts_and_languages(dataset)
encoded_texts = np.array(self.tfidf.fit_transform(texts).toarray())
# Encoding language labels as integers
self.label_encoder = LabelEncoder()
integer_encoded = np.array(
self.label_encoder.fit_transform(languages)).reshape(-1, 1)
self.language_names = list(self.label_encoder.classes_)
# Encoding integers to one hot vectors
self.one_hot_encoder = OneHotEncoder(
sparse=False, handle_unknown="error")
encoded_languages = self.one_hot_encoder.fit_transform(integer_encoded)
# Saving the fitted tfidf vectorizer
joblib.dump(self.tfidf, os.path.join(self._save_dir, 'tfidf_vectorizer.joblib'))
# We return the training data in the format of the model input
return encoded_texts, encoded_languages
def __call__(self) -> Tuple[np.ndarray, np.ndarray, List[str]]:
# Regardless of the method, we're required to fit our preprocessing to the training data
if self.method == "fit":
encoded_texts, encoded_languages = self.preprocess_train_dataset()
return encoded_texts, encoded_languages, self.language_names
elif self.method == "evaluate":
dataset = self.json_helper.read_dataset_json_file("test.json")
# We transform the test data.
texts, languages = self.get_texts_and_languages(
dataset["common_examples"])
# Encoding text using TF-IDF.
encoded_texts = np.array(self.tfidf.transform(
texts).toarray()) # type: ignore
# Encoding language labels as integers
self.label_encoder = LabelEncoder()
# Transforming the language labels.
integer_encoded = self.label_encoder.fit_transform(
languages).reshape(-1, 1) # type:ignore
# Encoding integers to one hot vectors
self.one_hot_encoder = OneHotEncoder(
sparse=False, handle_unknown="error")
encoded_languages = np.array(self.one_hot_encoder.fit_transform(
integer_encoded))
return encoded_texts, encoded_languages
else:
raise ValueError("Unknown method!")
def get_prediction_data(self):
# The predict file contains a single JSON object whose only key is text.
data = self.json_helper.read_dataset_json_file("predict.json")
text = self.strip_numbers(data["text"])
encoded_texts = np.array(self.tfidf.transform(
[text]).toarray()) # type: ignore
return np.array([text]), encoded_texts
def encode_text(self, text: str):
sanitized_text = self.strip_numbers(text)
return self.tfidf.transform([sanitized_text]).toarray() # type: ignore