hexabot/nlu/models/intent_classifier.py
Mohamed Marrouchi 1981f2245d fix: enhance
2024-11-25 12:37:35 +01:00

240 lines
8.7 KiB
Python

import os
import json
import math
from typing import Tuple, Dict, List
from numpy import ndarray
import tensorflow as tf
from transformers import TFBertModel, AutoTokenizer, BatchEncoding
from keras.layers import Dropout, Dense
from sys import platform
if platform == "darwin":
from keras.optimizers.legacy import Adam
else:
from keras.optimizers import Adam
from keras.metrics import SparseCategoricalAccuracy
from focal_loss import SparseCategoricalFocalLoss
import numpy as np
from data_loaders.jisfdl import JISFDL
import boilerplate as tfbp
##
# Intent Classification with BERT
# This code is based on the paper BERT for Joint Intent Classification and Slot Filling by Chen et al. (2019),
# https://arxiv.org/abs/1902.10909 but on a different dataset made for a class project.
#
# Ideas were also taken from https://github.com/monologg/JointBERT, which is a PyTorch implementation of
# the paper with the original dataset.
##
@tfbp.default_export
class IntentClassifier(tfbp.Model):
default_hparams = {
"language": "",
"num_epochs": 2,
"dropout_prob": 0.1,
"intent_num_labels": 7,
"gamma": 2,
"k": 3
}
data_loader: JISFDL
def __init__(self, *args, **kwargs):
super().__init__(*args, **kwargs)
# Init data loader
self.data_loader = JISFDL(**kwargs)
# Load Tokenizer from transformers
# We will use a pretrained bert model bert-base-cased for both Tokenizer and our classifier.
# Read the environment variable
bert_model_by_language_json = os.getenv('BERT_MODEL_BY_LANGUAGE_JSON')
# Check if the environment variable is set
if not bert_model_by_language_json:
raise ValueError("The BERT_MODEL_BY_LANGUAGE_JSON environment variable is not set.")
# Parse the JSON string into a Python dictionary
try:
bert_models = json.loads(bert_model_by_language_json)
except json.JSONDecodeError as e:
raise ValueError(f"Failed to parse BERT_MODEL_BY_LANGUAGE_JSON: {e}")
# Ensure the parsed JSON is a dictionary
if not isinstance(bert_models, dict):
raise ValueError("The BERT_MODEL_BY_LANGUAGE_JSON must be a valid JSON object (dictionary).")
# Retrieve the BERT model name for the specified language
language = getattr(self.hparams, 'language', "en")
try:
bert_model_name = bert_models[language]
except KeyError as e:
raise ValueError(f"No BERT model is available for the provided language '{language}': {e}")
self.tokenizer = AutoTokenizer.from_pretrained(
bert_model_name, use_fast=False)
self.bert = TFBertModel.from_pretrained(bert_model_name)
self.dropout = Dropout(self.hparams.dropout_prob)
self.intent_classifier = Dense(self.hparams.intent_num_labels,
name="intent_classifier", activation="softmax")
def call(self, inputs, **kwargs):
trained_bert = self.bert(inputs, **kwargs)
pooled_output = trained_bert.pooler_output
# pooled_output for intent classification
pooled_output = self.dropout(pooled_output,
training=kwargs.get("training", False))
intent_probas = self.intent_classifier(pooled_output)
return intent_probas
def load_data(self, data_loader) -> Tuple[BatchEncoding, tf.Tensor, ndarray, int, int]:
return data_loader(self.tokenizer)
def get_metrics_by_intent(self, intent_probas: List[float], encoded_intents: tf.Tensor) -> Dict[str, dict]:
"""evaluating every intent individually"""
intent_names = self.extra_params["intent_names"] # type: ignore
count = {}
scores = {}
data_size = len(intent_probas)
# The confidence gets computed as the average probability predicted in each intent
for probas, actual_intent in zip(intent_probas, encoded_intents):
intent_name = intent_names[actual_intent]
# We sum and then divide by the number of texts in the intent.
count[intent_name] = count.get(intent_name, 0)+1
scores[intent_name] = scores.get(intent_name, {})
scores[intent_name]["intent_confidence"] = scores[intent_name].get("intent_confidence", 0)\
+ probas[actual_intent]
scores[intent_name]["loss"] = scores[intent_name].get("loss", 0)\
- math.log2(probas[actual_intent])
for intent_name in count.keys():
scores[intent_name]["frequency"] = count[intent_name]/data_size
scores[intent_name]["intent_confidence"] /= count[intent_name]
scores[intent_name]["loss"] /= count[intent_name]
return scores
def aggregate_metric(self, scores, key):
"""Group the intent metrics into a global evaluation"""
return np.sum([(scores[intent]["frequency"] * scores[intent][key]) for intent in scores.keys()])
def format_scores(self, scores: Dict[str, dict]):
for intent in scores.keys():
for metric, score in scores[intent].items():
# we will only take 4 decimals.
scores[intent][metric] = "{:.4f}".format(score)
return scores
@tfbp.runnable
def fit(self):
"""Training"""
encoded_texts, encoded_intents, encoded_slots, intent_names, slot_names = self.data_loader(
self.tokenizer)
if self.hparams.intent_num_labels != len(intent_names):
raise ValueError(
f"Hyperparam intent_num_labels mismatch, should be : {len(intent_names)}"
)
# Hyperparams, Optimizer and Loss function
opt = Adam(learning_rate=3e-5, epsilon=1e-08)
losses = SparseCategoricalFocalLoss(gamma=self.hparams.gamma)
metrics = [SparseCategoricalAccuracy("accuracy")]
# Compile model
self.compile(optimizer=opt, loss=losses, metrics=metrics)
x = {"input_ids": encoded_texts["input_ids"], "token_type_ids": encoded_texts["token_type_ids"],
"attention_mask": encoded_texts["attention_mask"]}
super().fit(
x, encoded_intents, epochs=self.hparams.num_epochs, batch_size=32, shuffle=True)
# Persist the model
self.extra_params["intent_names"] = intent_names
self.save()
@tfbp.runnable
def evaluate(self):
encoded_texts, encoded_intents, _, _, _ = self.data_loader(
self.tokenizer, self.extra_params)
metrics = [SparseCategoricalAccuracy("accuracy")]
self.compile(metrics=metrics)
intent_probas = self(encoded_texts) # type: ignore
scores = self.get_metrics_by_intent(intent_probas, encoded_intents)
overall_score = {}
overall_score["intent_confidence"] = self.aggregate_metric(
scores, "intent_confidence")
overall_score["loss"] = self.aggregate_metric(scores, "loss")
scores["Overall Scores"] = overall_score
scores = self.format_scores(scores)
print("\nScores per intent:")
for intent, score in scores.items():
print("{}: {}".format(intent, score))
return scores
def get_prediction(self, text: str):
inputs = self.data_loader.encode_text(text, self.tokenizer)
intent_probas = self(inputs) # type: ignore
intent_probas_np = intent_probas.numpy()
# Get the indices of the maximum values
intent_id = intent_probas_np.argmax(axis=-1)[0]
# get the confidences for each intent
intent_confidences = intent_probas_np[0]
margin = self.compute_normalized_confidence_margin(intent_probas_np)
output = {
"text": text,
"intent": {"name": self.extra_params["intent_names"][intent_id],
"confidence": float(intent_confidences[intent_id])},
"margin": margin,
}
return output
def compute_top_k_confidence(self, probs, k=3):
sorted_probas = np.sort(probs[0])[::-1] # Sort in descending order
top_k_sum = np.sum(sorted_probas[:k])
return top_k_sum
def compute_normalized_confidence_margin(self, probs):
highest_proba = np.max(probs[0])
sum_of_probas = self.compute_top_k_confidence(probs, self.hparams.k)
# Normalized margin
normalized_margin = highest_proba / sum_of_probas
return normalized_margin
@tfbp.runnable
def predict(self):
while True:
text = input("Provide text: ")
output = self.get_prediction(text)
print(output)
# Optionally, provide a way to exit the loop
if input("Try again? (y/n): ").lower() != 'y':
break