from sklearn.calibration import LabelEncoder import boilerplate as tfbp from sklearn.preprocessing import OneHotEncoder from sklearn.feature_extraction.text import TfidfVectorizer import re import numpy as np from typing import Any, Tuple, Dict, List import os import joblib from utils.json_helper import JsonHelper # TFLC (Term Frequency based Language Classifier) Data Loader class TFLCDL(tfbp.DataLoader): default_hparams: Dict[str, Any] = {"ngram_range": (3, 3), "test_size": .2} # We need to store the fitted preprocessing objects so that we can transform the # test and predict sets properly. _save_dir: str tfidf: TfidfVectorizer one_hot_encoder: OneHotEncoder label_encoder: LabelEncoder language_names: List[str] json_helper: JsonHelper def __init__(self, method=None, save_dir=None, **hparams): super().__init__(method, **hparams) self.json_helper = JsonHelper("tflc") self._save_dir = save_dir # We will opt for a TF-IDF representation of the data as the frequency of word # roots should give us a good idea about which language we're dealing with. if method == "fit": self.tfidf = TfidfVectorizer(analyzer="char_wb", ngram_range=tuple(self.hparams.ngram_range)) else: if self._save_dir is not None and os.path.isfile(os.path.join(self._save_dir, "tfidf_vectorizer.joblib")): self.tfidf = joblib.load(os.path.join(self._save_dir, 'tfidf_vectorizer.joblib')) else: raise ValueError(f'Unable to load tfidf in {self._save_dir} ') def strip_numbers(self, text: str): return re.sub(r'[0-9]{2,}', '', text.lower()) def get_texts_and_languages(self, dataset: List[dict]): """ Extracts the text and the language label from the text's JSON object""" texts = [] languages = [] for item in dataset: # An item is a JSON object that has text, entities among its keys. language = "" entities: List[dict] = item.get("entities", []) # There can only be at most 1 language for a single piece of text. # The entity we choose has to have "language as the name like this # { "name":"language","value":"fr","start":-1,"end":-1 } language_entities = list(filter(lambda entity: "language" in entity.values(), entities)) if language_entities: language = language_entities[0]["value"] # Numbers and capital letters don't provide information about the language # so it's better to not have them. if language: text = self.strip_numbers(item["text"]) texts.append(text) languages.append(language) return texts, languages def preprocess_train_dataset(self) -> Tuple[np.ndarray, np.ndarray]: """Preprocessing the training set and fitting the proprocess steps in the process""" json = self.json_helper.read_dataset_json_file("train.json") dataset = json["common_examples"] # If a sentence has a language label, we include it in our dataset # Otherwise, we discard it. texts, languages = self.get_texts_and_languages(dataset) encoded_texts = np.array(self.tfidf.fit_transform(texts).toarray()) # Encoding language labels as integers self.label_encoder = LabelEncoder() integer_encoded = np.array( self.label_encoder.fit_transform(languages)).reshape(-1, 1) self.language_names = list(self.label_encoder.classes_) # Encoding integers to one hot vectors self.one_hot_encoder = OneHotEncoder( sparse=False, handle_unknown="error") encoded_languages = self.one_hot_encoder.fit_transform(integer_encoded) # Saving the fitted tfidf vectorizer joblib.dump(self.tfidf, os.path.join(self._save_dir, 'tfidf_vectorizer.joblib')) # We return the training data in the format of the model input return encoded_texts, encoded_languages def __call__(self) -> Tuple[np.ndarray, np.ndarray, List[str]]: # Regardless of the method, we're required to fit our preprocessing to the training data if self.method == "fit": encoded_texts, encoded_languages = self.preprocess_train_dataset() return encoded_texts, encoded_languages, self.language_names elif self.method == "evaluate": dataset = self.json_helper.read_dataset_json_file("test.json") # We transform the test data. texts, languages = self.get_texts_and_languages( dataset["common_examples"]) # Encoding text using TF-IDF. encoded_texts = np.array(self.tfidf.transform( texts).toarray()) # type: ignore # Encoding language labels as integers self.label_encoder = LabelEncoder() # Transforming the language labels. integer_encoded = self.label_encoder.fit_transform( languages).reshape(-1, 1) # type:ignore # Encoding integers to one hot vectors self.one_hot_encoder = OneHotEncoder( sparse=False, handle_unknown="error") encoded_languages = np.array(self.one_hot_encoder.fit_transform( integer_encoded)) return encoded_texts, encoded_languages else: raise ValueError("Unknown method!") def get_prediction_data(self): # The predict file contains a single JSON object whose only key is text. data = self.json_helper.read_dataset_json_file("predict.json") text = self.strip_numbers(data["text"]) encoded_texts = np.array(self.tfidf.transform( [text]).toarray()) # type: ignore return np.array([text]), encoded_texts def encode_text(self, text: str): sanitized_text = self.strip_numbers(text) return self.tfidf.transform([sanitized_text]).toarray() # type: ignore