Merge pull request #462 from Hexastack/461-issue-saving-nlpsample-as-an-attachment
Some checks failed
Build and Push Docker API Image / build-and-push (push) Has been cancelled
Build and Push Docker Base Image / build-and-push (push) Has been cancelled
Build and Push Docker NLU Image / build-and-push (push) Has been cancelled
Build and Push Docker UI Image / build-and-push (push) Has been cancelled

feat: import nlpsamples files without adding them as attachments
This commit is contained in:
Med Marrouchi 2024-12-25 10:16:21 +01:00 committed by GitHub
commit bb83cd53bc
No known key found for this signature in database
GPG Key ID: B5690EEEBB952194
13 changed files with 503 additions and 246 deletions

View File

@ -112,7 +112,7 @@ export const config: Config = {
storageMode: 'disk',
maxUploadSize: process.env.UPLOAD_MAX_SIZE_IN_BYTES
? Number(process.env.UPLOAD_MAX_SIZE_IN_BYTES)
: 2000000,
: 50 * 1024 * 1024, // 50 MB in bytes
appName: 'Hexabot.ai',
},
pagination: {

View File

@ -6,17 +6,12 @@
* 2. All derivative works must include clear attribution to the original creator and software, Hexastack and Hexabot, in a prominent location (e.g., in the software's "About" section, documentation, and README file).
*/
import fs from 'fs';
import { CACHE_MANAGER } from '@nestjs/cache-manager';
import { BadRequestException, NotFoundException } from '@nestjs/common';
import { EventEmitter2 } from '@nestjs/event-emitter';
import { MongooseModule } from '@nestjs/mongoose';
import { Test, TestingModule } from '@nestjs/testing';
import { AttachmentRepository } from '@/attachment/repositories/attachment.repository';
import { AttachmentModel } from '@/attachment/schemas/attachment.schema';
import { AttachmentService } from '@/attachment/services/attachment.service';
import { HelperService } from '@/helper/helper.service';
import { LanguageRepository } from '@/i18n/repositories/language.repository';
import { Language, LanguageModel } from '@/i18n/schemas/language.schema';
@ -50,7 +45,6 @@ import { NlpEntityService } from '../services/nlp-entity.service';
import { NlpSampleEntityService } from '../services/nlp-sample-entity.service';
import { NlpSampleService } from '../services/nlp-sample.service';
import { NlpValueService } from '../services/nlp-value.service';
import { NlpService } from '../services/nlp.service';
import { NlpSampleController } from './nlp-sample.controller';
@ -60,7 +54,6 @@ describe('NlpSampleController', () => {
let nlpSampleService: NlpSampleService;
let nlpEntityService: NlpEntityService;
let nlpValueService: NlpValueService;
let attachmentService: AttachmentService;
let languageService: LanguageService;
let byeJhonSampleId: string;
let languages: Language[];
@ -76,7 +69,6 @@ describe('NlpSampleController', () => {
MongooseModule.forFeature([
NlpSampleModel,
NlpSampleEntityModel,
AttachmentModel,
NlpEntityModel,
NlpValueModel,
SettingModel,
@ -87,9 +79,7 @@ describe('NlpSampleController', () => {
LoggerService,
NlpSampleRepository,
NlpSampleEntityRepository,
AttachmentService,
NlpEntityService,
AttachmentRepository,
NlpEntityRepository,
NlpValueService,
NlpValueRepository,
@ -98,7 +88,6 @@ describe('NlpSampleController', () => {
LanguageRepository,
LanguageService,
EventEmitter2,
NlpService,
HelperService,
SettingRepository,
SettingService,
@ -131,7 +120,6 @@ describe('NlpSampleController', () => {
text: 'Bye Jhon',
})
).id;
attachmentService = module.get<AttachmentService>(AttachmentService);
languageService = module.get<LanguageService>(LanguageService);
languages = await languageService.findAll();
});
@ -315,83 +303,44 @@ describe('NlpSampleController', () => {
});
});
describe('import', () => {
it('should throw exception when attachment is not found', async () => {
const invalidattachmentId = (
await attachmentService.findOne({
name: 'store2.jpg',
})
).id;
await attachmentService.deleteOne({ name: 'store2.jpg' });
await expect(
nlpSampleController.import(invalidattachmentId),
).rejects.toThrow(NotFoundException);
});
it('should throw exception when file location is not present', async () => {
const attachmentId = (
await attachmentService.findOne({
name: 'store1.jpg',
})
).id;
jest.spyOn(fs, 'existsSync').mockReturnValueOnce(false);
await expect(nlpSampleController.import(attachmentId)).rejects.toThrow(
NotFoundException,
describe('importFile', () => {
it('should throw exception when something is wrong with the upload', async () => {
const file = {
buffer: Buffer.from('', 'utf-8'),
size: 0,
mimetype: 'text/csv',
} as Express.Multer.File;
await expect(nlpSampleController.importFile(file)).rejects.toThrow(
'Bad Request Exception',
);
});
it('should return a failure if an error occurs when parsing csv file ', async () => {
const mockCsvDataWithErrors: string = `intent,entities,lang,question
greeting,person,en`;
jest.spyOn(fs, 'existsSync').mockReturnValueOnce(true);
jest.spyOn(fs, 'readFileSync').mockReturnValueOnce(mockCsvDataWithErrors);
const attachmentId = (
await attachmentService.findOne({
name: 'store1.jpg',
})
).id;
const mockParsedCsvDataWithErrors = {
data: [{ intent: 'greeting', entities: 'person', lang: 'en' }],
errors: [
{
type: 'FieldMismatch',
code: 'TooFewFields',
message: 'Too few fields: expected 4 fields but parsed 3',
row: 0,
},
],
meta: {
delimiter: ',',
linebreak: '\n',
aborted: false,
truncated: false,
cursor: 49,
fields: ['intent', 'entities', 'lang', 'question'],
},
};
await expect(nlpSampleController.import(attachmentId)).rejects.toThrow(
new BadRequestException({
cause: mockParsedCsvDataWithErrors.errors,
description: 'Error while parsing CSV',
}),
);
const buffer = Buffer.from(mockCsvDataWithErrors, 'utf-8');
const file = {
buffer,
size: buffer.length,
mimetype: 'text/csv',
} as Express.Multer.File;
await expect(nlpSampleController.importFile(file)).rejects.toThrow();
});
it('should import data from a CSV file', async () => {
const attachmentId = (
await attachmentService.findOne({
name: 'store1.jpg',
})
).id;
const mockCsvData: string = [
`text,intent,language`,
`How much does a BMW cost?,price,en`,
].join('\n');
jest.spyOn(fs, 'existsSync').mockReturnValueOnce(true);
jest.spyOn(fs, 'readFileSync').mockReturnValueOnce(mockCsvData);
const result = await nlpSampleController.import(attachmentId);
const buffer = Buffer.from(mockCsvData, 'utf-8');
const file = {
buffer,
size: buffer.length,
mimetype: 'text/csv',
} as Express.Multer.File;
const result = await nlpSampleController.importFile(file);
const intentEntityResult = await nlpEntityService.findOne({
name: 'intent',
});
@ -429,9 +378,10 @@ describe('NlpSampleController', () => {
expect(intentEntityResult).toEqualPayload(intentEntity);
expect(priceValueResult).toEqualPayload(priceValue);
expect(textSampleResult).toEqualPayload(textSample);
expect(result).toEqual({ success: true });
expect(result).toEqualPayload([textSample]);
});
});
describe('deleteMany', () => {
it('should delete multiple nlp samples', async () => {
const samplesToDelete = [

View File

@ -6,8 +6,6 @@
* 2. All derivative works must include clear attribution to the original creator and software, Hexastack and Hexabot, in a prominent location (e.g., in the software's "About" section, documentation, and README file).
*/
import fs from 'fs';
import { join } from 'path';
import { Readable } from 'stream';
import {
@ -25,14 +23,13 @@ import {
Query,
Res,
StreamableFile,
UploadedFile,
UseInterceptors,
} from '@nestjs/common';
import { FileInterceptor } from '@nestjs/platform-express';
import { CsrfCheck } from '@tekuconcept/nestjs-csrf';
import { Response } from 'express';
import Papa from 'papaparse';
import { AttachmentService } from '@/attachment/services/attachment.service';
import { config } from '@/config';
import { HelperService } from '@/helper/helper.service';
import { LanguageService } from '@/i18n/services/language.service';
import { CsrfInterceptor } from '@/interceptors/csrf.interceptor';
@ -45,18 +42,17 @@ import { PopulatePipe } from '@/utils/pipes/populate.pipe';
import { SearchFilterPipe } from '@/utils/pipes/search-filter.pipe';
import { TFilterQuery } from '@/utils/types/filter.types';
import { NlpSampleCreateDto, NlpSampleDto } from '../dto/nlp-sample.dto';
import { NlpSampleDto } from '../dto/nlp-sample.dto';
import {
NlpSample,
NlpSampleFull,
NlpSamplePopulate,
NlpSampleStub,
} from '../schemas/nlp-sample.schema';
import { NlpSampleEntityValue, NlpSampleState } from '../schemas/types';
import { NlpSampleState } from '../schemas/types';
import { NlpEntityService } from '../services/nlp-entity.service';
import { NlpSampleEntityService } from '../services/nlp-sample-entity.service';
import { NlpSampleService } from '../services/nlp-sample.service';
import { NlpService } from '../services/nlp.service';
@UseInterceptors(CsrfInterceptor)
@Controller('nlpsample')
@ -68,11 +64,9 @@ export class NlpSampleController extends BaseController<
> {
constructor(
private readonly nlpSampleService: NlpSampleService,
private readonly attachmentService: AttachmentService,
private readonly nlpSampleEntityService: NlpSampleEntityService,
private readonly nlpEntityService: NlpEntityService,
private readonly logger: LoggerService,
private readonly nlpService: NlpService,
private readonly languageService: LanguageService,
private readonly helperService: HelperService,
) {
@ -369,129 +363,11 @@ export class NlpSampleController extends BaseController<
return deleteResult;
}
/**
* Imports NLP samples from a CSV file.
*
* @param file - The file path or ID of the CSV file to import.
*
* @returns A success message after the import process is completed.
*/
@CsrfCheck(true)
@Post('import/:file')
async import(
@Param('file')
file: string,
) {
// Check if file is present
const importedFile = await this.attachmentService.findOne(file);
if (!importedFile) {
throw new NotFoundException('Missing file!');
}
const filePath = importedFile
? join(config.parameters.uploadDir, importedFile.location)
: undefined;
// Check if file location is present
if (!fs.existsSync(filePath)) {
throw new NotFoundException('File does not exist');
}
const allEntities = await this.nlpEntityService.findAll();
// Check if file location is present
if (allEntities.length === 0) {
throw new NotFoundException(
'No entities found, please create them first.',
);
}
// Read file content
const data = fs.readFileSync(filePath, 'utf8');
// Parse local CSV file
const result: {
errors: any[];
data: Array<Record<string, string>>;
} = Papa.parse(data, {
header: true,
skipEmptyLines: true,
});
if (result.errors && result.errors.length > 0) {
this.logger.warn(
`Errors parsing the file: ${JSON.stringify(result.errors)}`,
);
throw new BadRequestException(result.errors, {
cause: result.errors,
description: 'Error while parsing CSV',
});
}
// Remove data with no intent
const filteredData = result.data.filter((d) => d.intent !== 'none');
const languages = await this.languageService.getLanguages();
const defaultLanguage = await this.languageService.getDefaultLanguage();
// Reduce function to ensure executing promises one by one
for (const d of filteredData) {
try {
// Check if a sample with the same text already exists
const existingSamples = await this.nlpSampleService.find({
text: d.text,
});
// Skip if sample already exists
if (Array.isArray(existingSamples) && existingSamples.length > 0) {
continue;
}
// Fallback to default language if 'language' is missing or invalid
if (!d.language || !(d.language in languages)) {
if (d.language) {
this.logger.warn(
`Language "${d.language}" does not exist, falling back to default.`,
);
}
d.language = defaultLanguage.code;
}
// Create a new sample dto
const sample: NlpSampleCreateDto = {
text: d.text,
trained: false,
language: languages[d.language].id,
};
// Create a new sample entity dto
const entities: NlpSampleEntityValue[] = allEntities
.filter(({ name }) => name in d)
.map(({ name }) => {
return {
entity: name,
value: d[name],
};
});
// Store any new entity/value
const storedEntities = await this.nlpEntityService.storeNewEntities(
sample.text,
entities,
['trait'],
);
// Store sample
const createdSample = await this.nlpSampleService.create(sample);
// Map and assign the sample ID to each stored entity
const sampleEntities = storedEntities.map((se) => ({
...se,
sample: createdSample?.id,
}));
// Store sample entities
await this.nlpSampleEntityService.createMany(sampleEntities);
} catch (err) {
this.logger.error('Error occurred when extracting data. ', err);
}
}
this.logger.log('Import process completed successfully.');
return { success: true };
@Post('import')
@UseInterceptors(FileInterceptor('file'))
async importFile(@UploadedFile() file: Express.Multer.File) {
const datasetContent = file.buffer.toString('utf-8');
return await this.nlpSampleService.parseAndSaveDataset(datasetContent);
}
}

View File

@ -7,6 +7,7 @@
*/
import { CACHE_MANAGER } from '@nestjs/cache-manager';
import { BadRequestException, NotFoundException } from '@nestjs/common';
import { EventEmitter2 } from '@nestjs/event-emitter';
import { MongooseModule } from '@nestjs/mongoose';
import { Test, TestingModule } from '@nestjs/testing';
@ -27,7 +28,7 @@ import { NlpEntityRepository } from '../repositories/nlp-entity.repository';
import { NlpSampleEntityRepository } from '../repositories/nlp-sample-entity.repository';
import { NlpSampleRepository } from '../repositories/nlp-sample.repository';
import { NlpValueRepository } from '../repositories/nlp-value.repository';
import { NlpEntityModel } from '../schemas/nlp-entity.schema';
import { NlpEntity, NlpEntityModel } from '../schemas/nlp-entity.schema';
import {
NlpSampleEntity,
NlpSampleEntityModel,
@ -41,7 +42,10 @@ import { NlpSampleService } from './nlp-sample.service';
import { NlpValueService } from './nlp-value.service';
describe('NlpSampleService', () => {
let nlpEntityService: NlpEntityService;
let nlpSampleService: NlpSampleService;
let nlpSampleEntityService: NlpSampleEntityService;
let languageService: LanguageService;
let nlpSampleEntityRepository: NlpSampleEntityRepository;
let nlpSampleRepository: NlpSampleRepository;
let languageRepository: LanguageRepository;
@ -84,7 +88,11 @@ describe('NlpSampleService', () => {
},
],
}).compile();
nlpEntityService = module.get<NlpEntityService>(NlpEntityService);
nlpSampleService = module.get<NlpSampleService>(NlpSampleService);
nlpSampleEntityService = module.get<NlpSampleEntityService>(
NlpSampleEntityService,
);
nlpSampleRepository = module.get<NlpSampleRepository>(NlpSampleRepository);
nlpSampleEntityRepository = module.get<NlpSampleEntityRepository>(
NlpSampleEntityRepository,
@ -92,6 +100,7 @@ describe('NlpSampleService', () => {
nlpSampleEntityRepository = module.get<NlpSampleEntityRepository>(
NlpSampleEntityRepository,
);
languageService = module.get<LanguageService>(LanguageService);
languageRepository = module.get<LanguageRepository>(LanguageRepository);
noNlpSample = await nlpSampleService.findOne({ text: 'No' });
nlpSampleEntity = await nlpSampleEntityRepository.findOne({
@ -162,4 +171,104 @@ describe('NlpSampleService', () => {
expect(result.deletedCount).toEqual(1);
});
});
describe('parseAndSaveDataset', () => {
it('should throw NotFoundException if no entities are found', async () => {
jest.spyOn(nlpEntityService, 'findAll').mockResolvedValue([]);
await expect(
nlpSampleService.parseAndSaveDataset(
'text,intent,language\nHello,none,en',
),
).rejects.toThrow(NotFoundException);
expect(nlpEntityService.findAll).toHaveBeenCalled();
});
it('should throw BadRequestException if CSV parsing fails', async () => {
const invalidCSV = 'text,intent,language\n"Hello,none'; // Malformed CSV
jest
.spyOn(nlpEntityService, 'findAll')
.mockResolvedValue([{ name: 'intent' } as NlpEntity]);
jest.spyOn(languageService, 'getLanguages').mockResolvedValue({});
jest
.spyOn(languageService, 'getDefaultLanguage')
.mockResolvedValue({ code: 'en' } as Language);
await expect(
nlpSampleService.parseAndSaveDataset(invalidCSV),
).rejects.toThrow(BadRequestException);
});
it('should filter out rows with "none" as intent', async () => {
const mockData = 'text,intent,language\nHello,none,en\nHi,greet,en';
jest
.spyOn(nlpEntityService, 'findAll')
.mockResolvedValue([{ name: 'intent' } as NlpEntity]);
jest
.spyOn(languageService, 'getLanguages')
.mockResolvedValue({ en: { id: '1' } });
jest
.spyOn(languageService, 'getDefaultLanguage')
.mockResolvedValue({ code: 'en' } as Language);
jest.spyOn(nlpSampleService, 'find').mockResolvedValue([]);
jest
.spyOn(nlpSampleService, 'create')
.mockResolvedValue({ id: '1', text: 'Hi' } as NlpSample);
jest.spyOn(nlpSampleEntityService, 'createMany').mockResolvedValue([]);
const result = await nlpSampleService.parseAndSaveDataset(mockData);
expect(result).toHaveLength(1);
expect(result[0].text).toEqual('Hi');
});
it('should fallback to the default language if the language is invalid', async () => {
const mockData = 'text,intent,language\nHi,greet,invalidLang';
jest
.spyOn(nlpEntityService, 'findAll')
.mockResolvedValue([{ name: 'intent' } as NlpEntity]);
jest
.spyOn(languageService, 'getLanguages')
.mockResolvedValue({ en: { id: '1' } });
jest
.spyOn(languageService, 'getDefaultLanguage')
.mockResolvedValue({ code: 'en' } as Language);
jest.spyOn(nlpSampleService, 'find').mockResolvedValue([]);
jest
.spyOn(nlpSampleService, 'create')
.mockResolvedValue({ id: '1', text: 'Hi' } as NlpSample);
jest.spyOn(nlpSampleEntityService, 'createMany').mockResolvedValue([]);
const result = await nlpSampleService.parseAndSaveDataset(mockData);
expect(result).toHaveLength(1);
expect(result[0].text).toEqual('Hi');
});
it('should successfully process and save valid dataset rows', async () => {
const mockData = 'text,intent,language\nHi,greet,en\nBye,bye,en';
const mockLanguages = { en: { id: '1' } };
jest
.spyOn(languageService, 'getLanguages')
.mockResolvedValue(mockLanguages);
jest
.spyOn(languageService, 'getDefaultLanguage')
.mockResolvedValue({ code: 'en' } as Language);
jest.spyOn(nlpSampleService, 'find').mockResolvedValue([]);
let id = 0;
jest.spyOn(nlpSampleService, 'create').mockImplementation((s) => {
return Promise.resolve({ id: (++id).toString(), ...s } as NlpSample);
});
jest.spyOn(nlpSampleEntityService, 'createMany').mockResolvedValue([]);
const result = await nlpSampleService.parseAndSaveDataset(mockData);
expect(nlpSampleEntityService.createMany).toHaveBeenCalledTimes(2);
expect(result).toHaveLength(2);
expect(result[0].text).toEqual('Hi');
expect(result[1].text).toEqual('Bye');
});
});
});

View File

@ -6,8 +6,13 @@
* 2. All derivative works must include clear attribution to the original creator and software, Hexastack and Hexabot, in a prominent location (e.g., in the software's "About" section, documentation, and README file).
*/
import { Injectable } from '@nestjs/common';
import {
BadRequestException,
Injectable,
NotFoundException,
} from '@nestjs/common';
import { OnEvent } from '@nestjs/event-emitter';
import Papa from 'papaparse';
import { Message } from '@/chat/schemas/message.schema';
import { Language } from '@/i18n/schemas/language.schema';
@ -23,7 +28,10 @@ import {
NlpSampleFull,
NlpSamplePopulate,
} from '../schemas/nlp-sample.schema';
import { NlpSampleState } from '../schemas/types';
import { NlpSampleEntityValue, NlpSampleState } from '../schemas/types';
import { NlpEntityService } from './nlp-entity.service';
import { NlpSampleEntityService } from './nlp-sample-entity.service';
@Injectable()
export class NlpSampleService extends BaseService<
@ -33,6 +41,8 @@ export class NlpSampleService extends BaseService<
> {
constructor(
readonly repository: NlpSampleRepository,
private readonly nlpSampleEntityService: NlpSampleEntityService,
private readonly nlpEntityService: NlpEntityService,
private readonly languageService: LanguageService,
private readonly logger: LoggerService,
) {
@ -50,6 +60,110 @@ export class NlpSampleService extends BaseService<
return await this.repository.deleteOne(id);
}
/**
* This function is responsible for parsing a CSV dataset string and saving the parsed data into the database.
* It ensures that all necessary entities and languages exist, validates the dataset, and processes it row by row
* to create NLP samples and associated entities in the system.
*
* @param data - The raw CSV dataset as a string.
* @returns A promise that resolves to an array of created NLP samples.
*/
async parseAndSaveDataset(data: string) {
const allEntities = await this.nlpEntityService.findAll();
// Check if file location is present
if (allEntities.length === 0) {
throw new NotFoundException(
'No entities found, please create them first.',
);
}
// Parse local CSV file
const result: {
errors: any[];
data: Array<Record<string, string>>;
} = Papa.parse(data, {
header: true,
skipEmptyLines: true,
});
if (result.errors && result.errors.length > 0) {
this.logger.warn(
`Errors parsing the file: ${JSON.stringify(result.errors)}`,
);
throw new BadRequestException(result.errors, {
cause: result.errors,
description: 'Error while parsing CSV',
});
}
// Remove data with no intent
const filteredData = result.data.filter((d) => d.intent !== 'none');
const languages = await this.languageService.getLanguages();
const defaultLanguage = await this.languageService.getDefaultLanguage();
const nlpSamples: NlpSample[] = [];
// Reduce function to ensure executing promises one by one
for (const d of filteredData) {
try {
// Check if a sample with the same text already exists
const existingSamples = await this.find({
text: d.text,
});
// Skip if sample already exists
if (Array.isArray(existingSamples) && existingSamples.length > 0) {
continue;
}
// Fallback to default language if 'language' is missing or invalid
if (!d.language || !(d.language in languages)) {
if (d.language) {
this.logger.warn(
`Language "${d.language}" does not exist, falling back to default.`,
);
}
d.language = defaultLanguage.code;
}
// Create a new sample dto
const sample: NlpSampleCreateDto = {
text: d.text,
trained: false,
language: languages[d.language].id,
};
// Create a new sample entity dto
const entities: NlpSampleEntityValue[] = allEntities
.filter(({ name }) => name in d)
.map(({ name }) => ({
entity: name,
value: d[name],
}));
// Store any new entity/value
const storedEntities = await this.nlpEntityService.storeNewEntities(
sample.text,
entities,
['trait'],
);
// Store sample
const createdSample = await this.create(sample);
nlpSamples.push(createdSample);
// Map and assign the sample ID to each stored entity
const sampleEntities = storedEntities.map((storedEntity) => ({
...storedEntity,
sample: createdSample?.id,
}));
// Store sample entities
await this.nlpSampleEntityService.createMany(sampleEntities);
} catch (err) {
this.logger.error('Error occurred when extracting data. ', err);
}
}
return nlpSamples;
}
/**
* When a language gets deleted, we need to set related samples to null
*

View File

@ -58,8 +58,8 @@
"custom_code_is_invalid": "Custom code seems to contain some errors.",
"attachment_failure_format": "Attachment has invalid format",
"drop_file_here": "Drop file here or click to upload",
"file_max_size": "File must have a size less than 25MB",
"attachment_failure_size": "Invalid size! File must have a size less than 25MB",
"file_max_size": "The file exceeds the maximum allowed size. Please ensure your file is within the size limit and try again.",
"attachment_failure_size": "The file exceeds the maximum allowed size. Please ensure your file is within the size limit and try again.",
"upload_failed": "Unable to upload the file!",
"value_is_required": "NLU Value is required",
"nlp_entity_name_is_invalid": "NLU Entity name format is invalid! Only `A-z`, `0-9` and `_` are allowed.",
@ -81,7 +81,9 @@
"subtitle_is_required": "Subtitle is required",
"category_is_required": "Flow is required",
"attachment_is_required": "Attachment is required",
"success_import": "Content has been successfuly imported!",
"success_import": "Content has been successfully imported!",
"import_failed": "Import failed",
"import_duplicated_data": "Data already exists",
"attachment_not_synced": "- Pending Sync. -",
"success_translation_refresh": "Translations has been successfully refreshed!",
"message_tag_is_required": "You need to specify a message tag.",
@ -106,7 +108,7 @@
"no_label_found": "No label found",
"code_is_required": "Language code is required",
"text_is_required": "Text is required",
"invalid_file_type": "Invalid file type",
"invalid_file_type": "Invalid file type. Please select a file in the supported format.",
"select_category": "Select a flow"
},
"menu": {
@ -341,6 +343,7 @@
"precision": "Precision",
"recall": "Recall",
"f1score": "F1 Score",
"all": "All",
"train": "Train",
"test": "Test",
"inbox": "Inbox",

View File

@ -58,8 +58,8 @@
"custom_code_is_invalid": "Le code personnalisé semble contenir quelques erreurs.",
"attachment_failure_format": "La pièce jointe a un format invalide",
"drop_file_here": "Déposez le fichier ici ou cliquez pour télécharger",
"file_max_size": "Le fichier doit avoir une taille inférieure à 25 Mo",
"attachment_failure_size": "Taille invalide! Le fichier doit avoir une taille inférieure à 25 Mo",
"file_max_size": "Le fichier dépasse la taille maximale autorisée. Veuillez vérifier que votre fichier respecte la limite de taille et réessayez.",
"attachment_failure_size": "Le fichier dépasse la taille maximale autorisée. Veuillez vérifier que votre fichier respecte la limite de taille et réessayez.",
"upload_failed": "Impossible d'envoyer le fichier au serveur!",
"value_is_required": "La valeur NLU est requise",
"nlp_entity_name_is_invalid": "Le nom d'entité NLU n'est pas valide! Seuls `A-z`,` 0-9` et `_` sont autorisés.",
@ -83,6 +83,8 @@
"category_is_required": "La catégorie est requise",
"attachment_is_required": "L'attachement est obligatoire",
"success_import": "Le contenu a été importé avec succès!",
"import_failed": "Échec de l'importation",
"import_duplicated_data": "Les données existent déjà",
"attachment_not_synced": "- En attente de Sync. -",
"success_translation_refresh": "Les traductions ont été actualisées avec succès!",
"message_tag_is_required": "Vous devez spécifier le tag de message.",
@ -106,7 +108,7 @@
"no_label_found": "Aucune étiquette trouvée",
"code_is_required": "Le code est requis",
"text_is_required": "Texte requis",
"invalid_file_type": "Type de fichier invalide",
"invalid_file_type": "Type de fichier invalide. Veuillez choisir un fichier dans un format pris en charge.",
"select_category": "Sélectionner une catégorie"
},
"menu": {
@ -341,6 +343,7 @@
"precision": "Précision",
"recall": "Rappel",
"f1score": "F1-Score",
"all": "Tout",
"train": "Apprentissage",
"test": "Evaluation",
"inbox": "Boîte de réception",

View File

@ -0,0 +1,82 @@
/*
* Copyright © 2024 Hexastack. All rights reserved.
*
* Licensed under the GNU Affero General Public License v3.0 (AGPLv3) with the following additional terms:
* 1. The name "Hexabot" is a trademark of Hexastack. You may not use this name in derivative works without express written permission.
* 2. All derivative works must include clear attribution to the original creator and software, Hexastack and Hexabot, in a prominent location (e.g., in the software's "About" section, documentation, and README file).
*/
import UploadIcon from "@mui/icons-material/Upload";
import { Button, CircularProgress } from "@mui/material";
import { ChangeEvent, forwardRef } from "react";
import { useConfig } from "@/hooks/useConfig";
import { useToast } from "@/hooks/useToast";
import { useTranslate } from "@/hooks/useTranslate";
import { Input } from "./Input";
export type FileUploadButtonProps = {
label: string;
accept?: string;
onChange: (file: File) => void;
isLoading?: boolean;
error?: boolean;
helperText?: string;
};
const FileUploadButton = forwardRef<HTMLLabelElement, FileUploadButtonProps>(
({ label, accept, isLoading = true, onChange }, ref) => {
const config = useConfig();
const { toast } = useToast();
const { t } = useTranslate();
const handleImportChange = async (event: ChangeEvent<HTMLInputElement>) => {
if (event.target.files?.length) {
const file = event.target.files.item(0);
if (!file) return false;
if (accept && !accept.split(",").includes(file.type)) {
toast.error(t("message.invalid_file_type"));
return false;
}
if (config.maxUploadSize && file.size > config.maxUploadSize) {
toast.error(t("message.file_max_size"));
return false;
}
onChange(file);
}
};
return (
<>
<Button
ref={ref}
htmlFor="importFile"
variant="contained"
component="label"
startIcon={<UploadIcon />}
endIcon={isLoading ? <CircularProgress size="1rem" /> : null}
disabled={isLoading}
>
{label}
</Button>
<Input
id="importFile"
type="file"
value="" // to trigger an automatic reset to allow the same file to be selected multiple times
sx={{ display: "none" }}
onChange={handleImportChange}
/>
</>
);
},
);
FileUploadButton.displayName = "FileUploadButton";
export default FileUploadButton;

View File

@ -7,9 +7,9 @@
*/
import CircleIcon from "@mui/icons-material/Circle";
import ClearIcon from "@mui/icons-material/Clear";
import DeleteIcon from "@mui/icons-material/Delete";
import DownloadIcon from "@mui/icons-material/Download";
import UploadIcon from "@mui/icons-material/Upload";
import {
Box,
Button,
@ -17,15 +17,19 @@ import {
Chip,
Grid,
IconButton,
InputAdornment,
MenuItem,
Stack,
Typography,
} from "@mui/material";
import { GridColDef, GridRowSelectionModel } from "@mui/x-data-grid";
import { useState } from "react";
import { useQueryClient } from "react-query";
import { DeleteDialog } from "@/app-components/dialogs";
import { ChipEntity } from "@/app-components/displays/ChipEntity";
import AutoCompleteEntitySelect from "@/app-components/inputs/AutoCompleteEntitySelect";
import FileUploadButton from "@/app-components/inputs/FileInput";
import { FilterTextfield } from "@/app-components/inputs/FilterTextfield";
import { Input } from "@/app-components/inputs/Input";
import {
@ -34,10 +38,12 @@ import {
} from "@/app-components/tables/columns/getColumns";
import { renderHeader } from "@/app-components/tables/columns/renderHeader";
import { DataGrid } from "@/app-components/tables/DataGrid";
import { isSameEntity } from "@/hooks/crud/helpers";
import { useDelete } from "@/hooks/crud/useDelete";
import { useDeleteMany } from "@/hooks/crud/useDeleteMany";
import { useFind } from "@/hooks/crud/useFind";
import { useGetFromCache } from "@/hooks/crud/useGet";
import { useImport } from "@/hooks/crud/useImport";
import { useConfig } from "@/hooks/useConfig";
import { getDisplayDialogs, useDialog } from "@/hooks/useDialog";
import { useHasPermission } from "@/hooks/useHasPermission";
@ -60,6 +66,7 @@ import { NlpImportDialog } from "../NlpImportDialog";
import { NlpSampleDialog } from "../NlpSampleDialog";
const NLP_SAMPLE_TYPE_COLORS = {
all: "#fff",
test: "#e6a23c",
train: "#67c23a",
inbox: "#909399",
@ -69,7 +76,8 @@ export default function NlpSample() {
const { apiUrl } = useConfig();
const { toast } = useToast();
const { t } = useTranslate();
const [type, setType] = useState<NlpSampleType | undefined>(undefined);
const queryClient = useQueryClient();
const [type, setType] = useState<NlpSampleType | "all">("all");
const [language, setLanguage] = useState<string | undefined>(undefined);
const hasPermission = useHasPermission();
const getNlpEntityFromCache = useGetFromCache(EntityType.NLP_ENTITY);
@ -79,7 +87,10 @@ export default function NlpSample() {
);
const getLanguageFromCache = useGetFromCache(EntityType.LANGUAGE);
const { onSearch, searchPayload } = useSearch<INlpSample>({
$eq: [...(type ? [{ type }] : []), ...(language ? [{ language }] : [])],
$eq: [
...(type !== "all" ? [{ type }] : []),
...(language ? [{ language }] : []),
],
$iLike: ["text"],
});
const { mutateAsync: deleteNlpSample } = useDelete(EntityType.NLP_SAMPLE, {
@ -104,6 +115,32 @@ export default function NlpSample() {
},
},
);
const { mutateAsync: importDataset, isLoading } = useImport(
EntityType.NLP_SAMPLE,
{
onError: () => {
toast.error(t("message.import_failed"));
},
onSuccess: (data) => {
queryClient.removeQueries({
predicate: ({ queryKey }) => {
const [_qType, qEntity] = queryKey;
return (
isSameEntity(qEntity, EntityType.NLP_SAMPLE_ENTITY) ||
isSameEntity(qEntity, EntityType.NLP_ENTITY) ||
isSameEntity(qEntity, EntityType.NLP_VALUE)
);
},
});
if (data.length) {
toast.success(t("message.success_import"));
} else {
toast.error(t("message.import_duplicated_data"));
}
},
},
);
const [selectedNlpSamples, setSelectedNlpSamples] = useState<string[]>([]);
const { dataGridProps } = useFind(
{ entity: EntityType.NLP_SAMPLE, format: Format.FULL },
@ -259,6 +296,9 @@ export default function NlpSample() {
const handleSelectionChange = (selection: GridRowSelectionModel) => {
setSelectedNlpSamples(selection as string[]);
};
const handleImportChange = async (file: File) => {
await importDataset(file);
};
return (
<Grid item xs={12}>
@ -292,7 +332,7 @@ export default function NlpSample() {
<AutoCompleteEntitySelect<ILanguage, "title", false>
fullWidth={false}
sx={{
minWidth: "150px",
minWidth: "256px",
}}
autoFocus
searchFields={["title", "code"]}
@ -307,35 +347,38 @@ export default function NlpSample() {
select
fullWidth={false}
sx={{
minWidth: "150px",
minWidth: "256px",
}}
label={t("label.dataset")}
value={type}
onChange={(e) => setType(e.target.value as NlpSampleType)}
SelectProps={{
...(type && {
IconComponent: () => (
<IconButton size="small" onClick={() => setType(undefined)}>
<DeleteIcon />
</IconButton>
endAdornment: (
<InputAdornment sx={{ marginRight: "1rem" }} position="end">
<IconButton size="small" onClick={() => setType("all")}>
<ClearIcon sx={{ fontSize: "1.25rem" }} />
</IconButton>
</InputAdornment>
),
}),
renderValue: (value) => <Box>{t(`label.${value}`)}</Box>,
}}
>
{Object.values(NlpSampleType).map((nlpSampleType, index) => (
<MenuItem key={index} value={nlpSampleType}>
<Grid container>
<Grid item xs={4}>
{["all", ...Object.values(NlpSampleType)].map(
(nlpSampleType, index) => (
<MenuItem key={index} value={nlpSampleType}>
<Box display="flex" gap={1}>
<CircleIcon
fontSize="small"
sx={{ color: NLP_SAMPLE_TYPE_COLORS[nlpSampleType] }}
sx={{
color: NLP_SAMPLE_TYPE_COLORS[nlpSampleType],
}}
/>
</Grid>
<Grid item>{nlpSampleType}</Grid>
</Grid>
</MenuItem>
))}
<Typography>{t(`label.${nlpSampleType}`)}</Typography>
</Box>
</MenuItem>
),
)}
</Input>
<ButtonGroup sx={{ marginLeft: "auto" }}>
{hasPermission(EntityType.NLP_SAMPLE, PermissionAction.CREATE) &&
@ -343,13 +386,12 @@ export default function NlpSample() {
EntityType.NLP_SAMPLE_ENTITY,
PermissionAction.CREATE,
) ? (
<Button
variant="contained"
onClick={() => importDialogCtl.openDialog()}
startIcon={<UploadIcon />}
>
{t("button.import")}
</Button>
<FileUploadButton
accept="text/csv"
label={t("button.import")}
onChange={handleImportChange}
isLoading={isLoading}
/>
) : null}
{hasPermission(EntityType.NLP_SAMPLE, PermissionAction.READ) &&
hasPermission(

View File

@ -13,6 +13,7 @@ export const ConfigContext = createContext<IConfig | null>(null);
export interface IConfig {
apiUrl: string;
ssoEnabled: boolean;
maxUploadSize: number;
}
export const ConfigProvider = ({ children }) => {

View File

@ -0,0 +1,59 @@
/*
* Copyright © 2024 Hexastack. All rights reserved.
*
* Licensed under the GNU Affero General Public License v3.0 (AGPLv3) with the following additional terms:
* 1. The name "Hexabot" is a trademark of Hexastack. You may not use this name in derivative works without express written permission.
* 2. All derivative works must include clear attribution to the original creator and software, Hexastack and Hexabot, in a prominent location (e.g., in the software's "About" section, documentation, and README file).
*/
import { useMutation, useQueryClient } from "react-query";
import { QueryType, TMutationOptions } from "@/services/types";
import { IBaseSchema, IDynamicProps, TType } from "@/types/base.types";
import { useEntityApiClient } from "../useApiClient";
import { isSameEntity, useNormalizeAndCache } from "./helpers";
export const useImport = <
TEntity extends IDynamicProps["entity"],
TAttr extends File = File,
TBasic extends IBaseSchema = TType<TEntity>["basic"],
>(
entity: TEntity,
options: Omit<
TMutationOptions<TBasic[], Error, TAttr, TBasic[]>,
"mutationFn" | "mutationKey"
> = {},
) => {
const api = useEntityApiClient<TAttr, TBasic>(entity);
const queryClient = useQueryClient();
const normalizeAndCache = useNormalizeAndCache<TBasic, string[], TBasic>(
entity,
);
const { invalidate = true, ...rest } = options;
return useMutation({
mutationFn: async (variables) => {
const data = await api.import(variables);
const { result, entities } = normalizeAndCache(data);
// Invalidate current entity count and collection
if (invalidate) {
queryClient.invalidateQueries({
predicate: ({ queryKey }) => {
const [qType, qEntity] = queryKey;
return (
(qType === QueryType.count || qType === QueryType.collection) &&
isSameEntity(qEntity, entity)
);
},
});
}
return result.map((id) => entities[entity][id]);
},
...rest,
});
};

View File

@ -11,6 +11,7 @@ import type { NextApiRequest, NextApiResponse } from "next";
type ResponseData = {
apiUrl: string;
ssoEnabled: boolean;
maxUploadSize: number;
};
export default function handler(
@ -20,5 +21,8 @@ export default function handler(
res.status(200).json({
apiUrl: process.env.NEXT_PUBLIC_API_ORIGIN || "http://localhost:4000",
ssoEnabled: process.env.NEXT_PUBLIC_SSO_ENABLED === "true" || false,
maxUploadSize: process.env.UPLOAD_MAX_SIZE_IN_BYTES
? Number(process.env.UPLOAD_MAX_SIZE_IN_BYTES)
: 50 * 1024 * 1024, // 50 MB in bytes
});
}

View File

@ -269,6 +269,20 @@ export class EntityApiClient<TAttr, TBasic, TFull> extends ApiClient {
return data;
}
async import<T = TBasic>(file: File) {
const { _csrf } = await this.getCsrf();
const formData = new FormData();
formData.append("file", file);
const { data } = await this.request.post<T[], AxiosResponse<T[]>, FormData>(
`${ROUTES[this.type]}/import?_csrf=${_csrf}`,
formData,
);
return data;
}
async upload(file: File) {
const { _csrf } = await this.getCsrf();
const formData = new FormData();