hexabot/nlu/run.py

110 lines
3.8 KiB
Python
Raw Normal View History

2024-09-10 09:50:11 +00:00
"""Generic script to run any method in a TensorFlow model."""
from argparse import ArgumentParser
import json
import os
import sys
import boilerplate as tfbp
if __name__ == "__main__":
if len(sys.argv) < 3:
print(
"Usage:\n New run: python run.py [method] [save_dir] [model] [data_loader]"
" [hyperparameters...]\n Existing run: python run.py [method] [save_dir] "
"[data_loader]? [hyperparameters...]",
file=sys.stderr,
)
exit(1)
# Avoid errors due to a missing `experiments` directory.
if not os.path.exists("experiments"):
os.makedirs("experiments")
# Dynamically parse arguments from the command line depending on the model and data
# loader provided. The `method` and `save_dir` arguments are always required.
parser = ArgumentParser()
parser.add_argument("method", type=str)
parser.add_argument("save_dir", type=str)
# If modules.json exists, the model and the data loader modules can be inferred from
# `save_dir`, and the data loader can be optionally changed from its default.
#
# Note that we need to use `sys` because we need to read the command line args to
# determine what to parse with argparse.
modules_json_path = os.path.join("experiments", sys.argv[2], "modules.json")
if os.path.exists(modules_json_path):
with open(modules_json_path) as f:
classes = json.load(f)
Model = tfbp.get_model(classes["model"])
else:
Model = tfbp.get_model(sys.argv[3])
parser.add_argument("model", type=str)
if not os.path.exists(os.path.join("experiments", sys.argv[2])):
os.makedirs(os.path.join("experiments", sys.argv[2]))
with open(modules_json_path, "w") as f:
json.dump(
{"model": sys.argv[3]},
f,
indent=4,
sort_keys=True,
)
args = {}
saved_hparams = {}
hparams_json_path = os.path.join("experiments", sys.argv[2], "hparams.json")
if os.path.exists(hparams_json_path):
with open(hparams_json_path) as f:
saved_hparams = json.load(f)
for name, value in Model.default_hparams.items():
if name in saved_hparams:
value = saved_hparams[name]
args[name] = value
# Add a keyword argument to the argument parser for each hyperparameter.
for name, value in args.items():
# Make sure to correctly parse hyperparameters whose values are lists/tuples.
if type(value) in [list, tuple]:
if not len(value):
raise ValueError(
f"Cannot infer type of hyperparameter `{name}`. Please provide a "
"default value with nonzero length."
)
parser.add_argument(
f"--{name}", f"--{name}_", nargs="+", type=type(value[0]), default=value
)
else:
parser.add_argument(f"--{name}", type=type(value), default=value)
# Collect parsed hyperparameters.
FLAGS = parser.parse_args()
kwargs = {k: v for k, v in FLAGS._get_kwargs()}
for k in ["model", "save_dir"]:
if k in kwargs:
del kwargs[k]
# Instantiate model and data loader.
model = Model(os.path.join("experiments", FLAGS.save_dir), **kwargs)
# Restore the model's weights, or save them for a new run.
if os.path.isfile(os.path.join(model.save_dir, "checkpoint")):
model.restore()
else:
model.save()
# Run the specified model method.
if FLAGS.method not in Model._methods:
methods_str = "\n ".join(Model._methods.keys())
raise ValueError(
f"Model does not have a runnable method `{FLAGS.method}`. Methods available:"
f"\n {methods_str}"
)
Model._methods[FLAGS.method](model)