hexabot/nlu/data_loaders/jisfdl.py

220 lines
8.4 KiB
Python
Raw Normal View History

2024-09-10 09:50:11 +00:00
from typing import Dict, List, Union
import tensorflow as tf
import json
import numpy as np
from transformers import PreTrainedTokenizerFast, PreTrainedTokenizer
2024-09-19 08:14:17 +00:00
2024-09-10 09:50:11 +00:00
import boilerplate as tfbp
from utils.json_helper import JsonHelper
class JointRawData(object):
id: str
intent: str
positions: Dict[str, List[int]]
slots: Dict[str, str]
text: str
def __init__(self, id, intent, positions, slots, text):
self.id = id
self.intent = intent
self.positions = positions
self.slots = slots
self.text = text
def __repr__(self):
return str(json.dumps(self.__dict__, indent=2)) # type: ignore
##
# JISFDL : Joint Intent and Slot Filling Model Data Loader
##
class JISFDL(tfbp.DataLoader):
def encode_texts(self, texts: List[str], tokenizer: Union[PreTrainedTokenizer, PreTrainedTokenizerFast]):
# https://huggingface.co/transformers/preprocessing.html
return tokenizer(texts, padding=True, truncation=True, return_tensors="tf")
def encode_intents(self, intents, intent_map) -> tf.Tensor:
"""Map to train_data values"""
encoded = []
for i in intents:
encoded.append(intent_map[i])
# convert to tf tensor
return tf.convert_to_tensor(encoded, dtype="int32")
def get_slot_from_token(self, token: str, slot_dict: Dict[str, str]):
""" this function maps a token to its slot label"""
# each token either belongs to a slot or has a null slot
for slot_label, value in slot_dict.items():
if token in value:
return slot_label
return None
def encode_slots(self, tokenizer: Union[PreTrainedTokenizer, PreTrainedTokenizerFast],
all_slots: List[Dict[str, str]], all_texts: List[str],
slot_map: Dict[str, int], max_len: int):
encoded_slots = np.zeros(
shape=(len(all_texts), max_len), dtype=np.int32)
# each slot is assigned to the tokenized sentence instead of the raw text
# so that mapping a token to its slots is easier since we can use our bert tokenizer.
for idx, slot_names in enumerate(all_slots):
for slot_name, slot_text in slot_names.items():
slot_names[slot_name] = tokenizer.tokenize(slot_text)
# we now assign the sentence's slot dictionary to its index in all_slots .
all_slots[idx] = slot_names
for idx, text in enumerate(all_texts):
enc = [] # for this idx, to be added at the end to encoded_slots
# for each text, we retrieve all the slots with the
# words in that slot.
slot_names = all_slots[idx]
# we tokenize our input text to match the tokens in the slot dictionary
tokens = tokenizer.tokenize(text)
for token in tokens:
# each token is matched to its individual label
token_slot_name = self.get_slot_from_token(token, slot_names)
# if the token has no label, we give the null label <PAD>
# the label is then appended to the labels of the current text
if token_slot_name:
enc.append(slot_map[token_slot_name])
else:
enc.append(0)
# now add to encoded_slots
# the first and the last elements
# in encoded text are special characters
encoded_slots[idx, 1:len(enc)+1] = enc
return encoded_slots
def parse_dataset_intents(self, data):
intents = []
k = 0
# Filter examples by language
lang = self.hparams.language
all_examples = data["common_examples"]
2024-09-19 08:14:17 +00:00
if not lang:
examples = all_examples
else:
examples = filter(lambda exp: any(not lang or (e['entity'] == 'language' and e['value'] == lang) for e in exp['entities']), all_examples)
2024-09-10 09:50:11 +00:00
# Parse raw data
for exp in examples:
text = exp["text"]
intent = exp["intent"]
entities = exp["entities"]
# Filter out language entities
slot_entities = filter(
lambda e: e["entity"] != "language", entities)
slots = {e["entity"]: e["value"] for e in slot_entities}
positions = [[e.get("start", -1), e.get("end", -1)]
for e in slot_entities]
temp = JointRawData(k, intent, positions, slots, text)
k += 1
intents.append(temp)
return intents
def __call__(self, tokenizer: Union[PreTrainedTokenizer, PreTrainedTokenizerFast], model_params = None):
# I have already transformed the train and test datasets to the new format using
# the transform to new hidden method.
helper = JsonHelper()
if self.method in ["fit", "train"]:
dataset = helper.read_dataset_json_file('train.json')
train_data = self.parse_dataset_intents(dataset)
return self._transform_dataset(train_data, tokenizer)
elif self.method in ["evaluate"]:
dataset = helper.read_dataset_json_file('test.json')
test_data = self.parse_dataset_intents(dataset)
return self._transform_dataset(test_data, tokenizer, model_params)
else:
raise ValueError("Unknown method!")
def _transform_dataset(self, dataset: List[JointRawData], tokenizer: Union[PreTrainedTokenizer, PreTrainedTokenizerFast], model_params = None):
# We have to encode the texts using the tokenizer to create tensors for training
# the classifier.
texts = [d.text for d in dataset]
encoded_texts = self.encode_texts(texts, tokenizer)
# Map intents, load from the model (evaluate), recompute from dataset otherwise (train)
intents = [d.intent for d in dataset]
if not model_params:
intent_names = list(set(intents))
# Map slots, load from the model (evaluate), recompute from dataset otherwise (train)
slot_names = set()
for td in dataset:
slots = td.slots
for slot in slots:
slot_names.add(slot)
slot_names = list(slot_names)
# To pad all the texts to the same length, the tokenizer will use special characters.
# To handle those we need to add <PAD> to slots_names. It can be some other symbol as well.
slot_names.insert(0, "<PAD>")
else:
2024-09-19 08:14:17 +00:00
if "intent_names" in model_params:
intent_names = model_params["intent_names"]
else:
intent_names = None
if "slot_names" in model_params:
slot_names = model_params["slot_names"]
else:
slot_names = None
if intent_names:
intent_map = dict() # Dict : intent -> index
for idx, ui in enumerate(intent_names):
intent_map[ui] = idx
else:
intent_map = None
2024-09-10 09:50:11 +00:00
# Encode intents
2024-09-19 08:14:17 +00:00
if intent_map:
encoded_intents = self.encode_intents(intents, intent_map)
else:
encoded_intents = None
2024-09-10 09:50:11 +00:00
2024-09-19 08:14:17 +00:00
if slot_names:
slot_map: Dict[str, int] = dict() # slot -> index
for idx, us in enumerate(slot_names):
slot_map[us] = idx
else:
slot_map = None
2024-09-10 09:50:11 +00:00
# Encode slots
# Text : Add a tune to my elrow Guest List
# {'music_item': 'tune', 'playlist_owner': 'my', 'playlist': 'elrow Guest List'}
# [ 0 0 0 18 0 26 12 12 12 12 0 0 0 0 0 0 0 0 0 0 0 0 0 0
# 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0]
max_len = len(encoded_texts["input_ids"][0]) # type: ignore
all_slots = [td.slots for td in dataset]
all_texts = [td.text for td in dataset]
2024-09-19 08:14:17 +00:00
if slot_map:
encoded_slots = self.encode_slots(tokenizer,
2024-09-10 09:50:11 +00:00
all_slots, all_texts, slot_map, max_len)
2024-09-19 08:14:17 +00:00
else:
encoded_slots = None
2024-09-10 09:50:11 +00:00
return encoded_texts, encoded_intents, encoded_slots, intent_names, slot_names
def get_prediction_data(self) -> str:
helper = JsonHelper()
dataset = helper.read_dataset_json_file('predict.json')
return dataset["text"]
def encode_text(self, text: str, tokenizer: Union[PreTrainedTokenizer, PreTrainedTokenizerFast]):
return self.encode_texts([text], tokenizer)