mirror of
https://github.com/hexastack/hexabot
synced 2025-01-01 16:46:00 +00:00
110 lines
3.8 KiB
Python
110 lines
3.8 KiB
Python
|
"""Generic script to run any method in a TensorFlow model."""
|
||
|
|
||
|
from argparse import ArgumentParser
|
||
|
import json
|
||
|
import os
|
||
|
import sys
|
||
|
|
||
|
import boilerplate as tfbp
|
||
|
|
||
|
|
||
|
if __name__ == "__main__":
|
||
|
if len(sys.argv) < 3:
|
||
|
print(
|
||
|
"Usage:\n New run: python run.py [method] [save_dir] [model] [data_loader]"
|
||
|
" [hyperparameters...]\n Existing run: python run.py [method] [save_dir] "
|
||
|
"[data_loader]? [hyperparameters...]",
|
||
|
file=sys.stderr,
|
||
|
)
|
||
|
exit(1)
|
||
|
|
||
|
# Avoid errors due to a missing `experiments` directory.
|
||
|
if not os.path.exists("experiments"):
|
||
|
os.makedirs("experiments")
|
||
|
|
||
|
# Dynamically parse arguments from the command line depending on the model and data
|
||
|
# loader provided. The `method` and `save_dir` arguments are always required.
|
||
|
parser = ArgumentParser()
|
||
|
parser.add_argument("method", type=str)
|
||
|
parser.add_argument("save_dir", type=str)
|
||
|
|
||
|
# If modules.json exists, the model and the data loader modules can be inferred from
|
||
|
# `save_dir`, and the data loader can be optionally changed from its default.
|
||
|
#
|
||
|
# Note that we need to use `sys` because we need to read the command line args to
|
||
|
# determine what to parse with argparse.
|
||
|
modules_json_path = os.path.join("experiments", sys.argv[2], "modules.json")
|
||
|
if os.path.exists(modules_json_path):
|
||
|
|
||
|
with open(modules_json_path) as f:
|
||
|
classes = json.load(f)
|
||
|
|
||
|
Model = tfbp.get_model(classes["model"])
|
||
|
else:
|
||
|
Model = tfbp.get_model(sys.argv[3])
|
||
|
|
||
|
parser.add_argument("model", type=str)
|
||
|
|
||
|
if not os.path.exists(os.path.join("experiments", sys.argv[2])):
|
||
|
os.makedirs(os.path.join("experiments", sys.argv[2]))
|
||
|
|
||
|
with open(modules_json_path, "w") as f:
|
||
|
json.dump(
|
||
|
{"model": sys.argv[3]},
|
||
|
f,
|
||
|
indent=4,
|
||
|
sort_keys=True,
|
||
|
)
|
||
|
|
||
|
args = {}
|
||
|
saved_hparams = {}
|
||
|
hparams_json_path = os.path.join("experiments", sys.argv[2], "hparams.json")
|
||
|
if os.path.exists(hparams_json_path):
|
||
|
with open(hparams_json_path) as f:
|
||
|
saved_hparams = json.load(f)
|
||
|
for name, value in Model.default_hparams.items():
|
||
|
if name in saved_hparams:
|
||
|
value = saved_hparams[name]
|
||
|
args[name] = value
|
||
|
|
||
|
# Add a keyword argument to the argument parser for each hyperparameter.
|
||
|
for name, value in args.items():
|
||
|
# Make sure to correctly parse hyperparameters whose values are lists/tuples.
|
||
|
if type(value) in [list, tuple]:
|
||
|
if not len(value):
|
||
|
raise ValueError(
|
||
|
f"Cannot infer type of hyperparameter `{name}`. Please provide a "
|
||
|
"default value with nonzero length."
|
||
|
)
|
||
|
parser.add_argument(
|
||
|
f"--{name}", f"--{name}_", nargs="+", type=type(value[0]), default=value
|
||
|
)
|
||
|
else:
|
||
|
parser.add_argument(f"--{name}", type=type(value), default=value)
|
||
|
|
||
|
# Collect parsed hyperparameters.
|
||
|
FLAGS = parser.parse_args()
|
||
|
kwargs = {k: v for k, v in FLAGS._get_kwargs()}
|
||
|
for k in ["model", "save_dir"]:
|
||
|
if k in kwargs:
|
||
|
del kwargs[k]
|
||
|
|
||
|
# Instantiate model and data loader.
|
||
|
model = Model(os.path.join("experiments", FLAGS.save_dir), **kwargs)
|
||
|
|
||
|
# Restore the model's weights, or save them for a new run.
|
||
|
if os.path.isfile(os.path.join(model.save_dir, "checkpoint")):
|
||
|
model.restore()
|
||
|
else:
|
||
|
model.save()
|
||
|
|
||
|
# Run the specified model method.
|
||
|
if FLAGS.method not in Model._methods:
|
||
|
methods_str = "\n ".join(Model._methods.keys())
|
||
|
raise ValueError(
|
||
|
f"Model does not have a runnable method `{FLAGS.method}`. Methods available:"
|
||
|
f"\n {methods_str}"
|
||
|
)
|
||
|
|
||
|
Model._methods[FLAGS.method](model)
|