hexabot/nlu/main.py

116 lines
3.8 KiB
Python
Raw Permalink Normal View History

2024-09-10 09:50:11 +00:00
# from typing import Union
import asyncio
import os
from typing import Annotated, Union
from fastapi.responses import JSONResponse
import boilerplate as tfbp
from fastapi import Depends, FastAPI, HTTPException, status
from pydantic import BaseModel
import logging
from huggingface_hub import login
2024-09-10 09:50:11 +00:00
# Set up logging configuration
logging.basicConfig(level=logging.DEBUG, format='%(asctime)s - %(levelname)s - %(message)s')
AUTH_TOKEN = os.getenv("AUTH_TOKEN", "TOKEN_MUST_BE_DEFINED")
AVAILABLE_LANGUAGES = os.getenv("AVAILABLE_LANGUAGES", "en,fr").split(',')
TFLC_REPO_ID = os.getenv("TFLC_REPO_ID")
2024-09-19 08:14:17 +00:00
INTENT_CLASSIFIER_REPO_ID = os.getenv("INTENT_CLASSIFIER_REPO_ID")
SLOT_FILLER_REPO_ID = os.getenv("SLOT_FILLER_REPO_ID")
HF_AUTH_TOKEN = os.getenv("HF_AUTH_TOKEN")
# Log in to HuggingFace using the provided access token
if HF_AUTH_TOKEN:
login(token=HF_AUTH_TOKEN)
2024-09-10 09:50:11 +00:00
def load_language_classifier():
# Init language classifier model
Model = tfbp.get_model("tflc")
kwargs = {}
model = Model("", method="predict", repo_id=TFLC_REPO_ID, **kwargs)
model.load_model()
logging.info(f'Successfully loaded the language classifier model')
return model
def load_intent_classifiers():
2024-09-19 08:14:17 +00:00
Model = tfbp.get_model("intent_classifier")
intent_classifiers = {}
2024-09-10 09:50:11 +00:00
for language in AVAILABLE_LANGUAGES:
kwargs = {}
2024-09-19 08:14:17 +00:00
intent_classifiers[language] = Model(save_dir=language, method="predict", repo_id=INTENT_CLASSIFIER_REPO_ID, **kwargs)
intent_classifiers[language].load_model()
2024-09-10 09:50:11 +00:00
logging.info(f'Successfully loaded the intent classifier {language} model')
2024-09-19 08:14:17 +00:00
return intent_classifiers
2024-11-25 13:25:11 +00:00
def load_slot_fillers():
Model = tfbp.get_model("slot_filler")
2024-09-19 08:14:17 +00:00
slot_fillers = {}
for language in AVAILABLE_LANGUAGES:
kwargs = {}
slot_fillers[language] = Model(save_dir=language, method="predict", repo_id=SLOT_FILLER_REPO_ID, **kwargs)
slot_fillers[language].load_model()
logging.info(f'Successfully loaded the slot filler {language} model')
return slot_fillers
2024-09-10 09:50:11 +00:00
def load_models():
app.language_classifier = load_language_classifier() # type: ignore
app.intent_classifiers = load_intent_classifiers() # type: ignore
2024-11-25 13:25:11 +00:00
app.slot_fillers = load_slot_fillers() # type: ignore
2024-09-10 09:50:11 +00:00
app = FastAPI()
def authenticate(
token: str
):
if token != AUTH_TOKEN:
raise HTTPException(
status_code=status.HTTP_401_UNAUTHORIZED,
detail="Unauthorized access",
)
return True
class ParseInput(BaseModel):
q: str
project: Union[str, None] = None
@app.on_event("startup")
async def startup_event():
asyncio.create_task(asyncio.to_thread(load_models))
@app.get("/health", status_code=200,)
async def check_health():
return "Startup checked"
@app.post("/parse")
def parse(input: ParseInput, is_authenticated: Annotated[str, Depends(authenticate)]):
2024-09-19 08:14:17 +00:00
if not hasattr(app, 'language_classifier') or not hasattr(app, 'intent_classifiers') or not hasattr(app, 'slot_fillers'):
2024-09-10 09:50:11 +00:00
headers = {"Retry-After": "120"} # Suggest retrying after 2 minutes
2024-09-19 08:14:17 +00:00
return JSONResponse(status_code=status.HTTP_503_SERVICE_UNAVAILABLE, content={"message": "Models are still loading, please retry later."}, headers=headers)
2024-09-10 09:50:11 +00:00
2024-09-23 10:35:01 +00:00
language_prediction = app.language_classifier.get_prediction(input.q) # type: ignore
language = language_prediction.get("value")
intent_prediction = app.intent_classifiers[language].get_prediction(
2024-09-19 08:14:17 +00:00
input.q) # type: ignore
2024-09-23 10:35:01 +00:00
slot_prediction = app.slot_fillers[language].get_prediction(
2024-09-10 09:50:11 +00:00
input.q) # type: ignore
2024-09-23 19:22:35 +00:00
if slot_prediction.get("entities"):
entities = slot_prediction.get("entities")
else:
entities = []
entities.append(language_prediction)
2024-09-19 08:14:17 +00:00
return {
"text": input.q,
"intent": intent_prediction.get("intent"),
2024-09-23 19:22:35 +00:00
"entities": entities,
2024-09-19 08:14:17 +00:00
}