hexabot/nlu/models/tflc.py

171 lines
6.1 KiB
Python
Raw Permalink Normal View History

2024-09-10 09:50:11 +00:00
import tensorflow as tf
from sys import platform
if platform == "darwin":
from keras.optimizers.legacy import Adam
else:
from keras.optimizers import Adam
from keras import layers, Sequential, regularizers
import numpy as np
from typing import Any, Dict, Tuple
from data_loaders.tflcdl import TFLCDL
import boilerplate as tfbp
def mapify(keys: list, values: list) -> dict:
return dict(zip(keys, values))
def format_float(values: np.ndarray, precision: int = 5, padding: int = 5) -> list:
return [np.format_float_positional(v, precision=precision, pad_right=padding,
min_digits=padding) for v in values]
# TFLC (Term Frequency based Language Classifier)
@tfbp.default_export
class TFLC(tfbp.Model):
default_hparams: Dict[str, Any] = {
"layer_sizes": [32, 2],
"num_epochs": 70,
"kernel_regularizer": 1e-4,
"bias_regularizer": 1e-4,
"dropout_proba": .2,
"learning_rate": 1e-3
}
data_loader: TFLCDL
def __init__(self, *args, **kwargs):
super().__init__(*args, **kwargs)
# Init data loader
self.data_loader = TFLCDL(save_dir=self._save_dir, **kwargs)
# Init layers
self.forward = Sequential()
# Dropout layer to avoid overfitting
self.forward.add(layers.Dropout(self.hparams.dropout_proba))
# Hidden feed forward layers
for hidden_size in self.hparams.layer_sizes[:-1]:
self.forward.add(layers.Dense(hidden_size, activation=tf.nn.sigmoid,
kernel_regularizer=regularizers.L2(
self.hparams.kernel_regularizer),
bias_regularizer=regularizers.L2(self.hparams.bias_regularizer)))
# Output layer
self.forward.add(layers.Dense(self.hparams.layer_sizes[-1], activation=tf.nn.softmax,
kernel_regularizer=regularizers.L2(
self.hparams.kernel_regularizer),
bias_regularizer=regularizers.L2(self.hparams.bias_regularizer)))
self.loss = tf.losses.categorical_crossentropy
self.optimizer = Adam(self.hparams.learning_rate)
def call(self, x: tf.Tensor):
return self.forward(x)
@tfbp.runnable
def fit(self):
# getting our training data
X_train, y_train, languages = self.data_loader()
self.compile(self.optimizer, self.loss)
# fitting the model to the data
super().fit(
x=X_train,
y=y_train,
# validation_split=0.1,
epochs=self.hparams.num_epochs,
shuffle=True)
self.extra_params["languages"] = languages
# Save the model
self.save()
@tfbp.runnable
def evaluate(self):
languages = list(self.extra_params['languages'])
# loading the test set
X_test, y_test = self.data_loader()
y_pred = super().predict(X_test)
self.calculate_metrics(y_test, y_pred, languages)
2024-10-22 10:57:30 +00:00
def preprocess_text(self, text):
# The predict file contains a single JSON object whose only key is text.
stripped_text = self.strip_numbers(text)
encoded_text = np.array(self.tfidf.transform(
[stripped_text]).toarray()) # type: ignore
return np.array([stripped_text]), encoded_text
2024-09-10 09:50:11 +00:00
@tfbp.runnable
def predict(self):
languages = list(self.extra_params['languages'])
2024-10-22 10:57:30 +00:00
input_provided = input("Provide text: ")
text, encoded_text = self.preprocess_text(input_provided)
2024-09-10 09:50:11 +00:00
# converting a one hot output to language index
2024-10-22 10:57:30 +00:00
probas = super().predict(encoded_text)
2024-09-10 09:50:11 +00:00
predictions = np.argmax(probas, axis=1)
results = []
for idx, prediction in enumerate(predictions):
print('The sentence "{}" is in {}.'.format(
2024-10-22 10:57:30 +00:00
text[idx], languages[prediction].upper()))
results.append({'text': text[idx], 'language': prediction})
2024-09-10 09:50:11 +00:00
return results
def get_prediction(self, text: str):
languages = self.extra_params["languages"]
encoded_text = self.data_loader.encode_text(text)
probas = super().predict(encoded_text)
predictions = np.argmax(probas, axis=1)
prediction_id = predictions[0]
return {
'entity': "language",
'value': languages[prediction_id],
'confidence': float(probas[0][prediction_id])
}
def calculate_metrics(self, y_true: np.ndarray, y_pred: np.ndarray, languages: list,
formatting: int = 5) -> Tuple[np.float64, dict, dict, dict]:
argm = np.argmax(y_pred, axis=1)
actual_pred = [i == argm[j] for j in range(
y_pred.shape[0]) for i in range(y_pred.shape[1])]
actual_pred = np.array(actual_pred).reshape(-1, y_true.shape[1])
# we use these to compute the metrics
true_positives = (np.logical_and(
actual_pred == y_true, y_true)).sum(axis=0)
actual_positives = y_true.sum(axis=0)
positive_preds = actual_pred.sum(axis=0)
# our chosen metrics are recall, precision, accuracy and F1 score
recall = (true_positives/actual_positives).T
precision = (true_positives/positive_preds).T
f1_score = (2*recall*precision/(recall+precision)).T
# converting our other metrics into a map (dict)
recall = mapify(languages, format_float(recall, padding=formatting))
precision = mapify(languages, format_float(
precision, padding=formatting))
f1_score = mapify(languages, format_float(
f1_score, padding=formatting))
# from one hot vectors to the language index
y_pred = np.array(np.argmax(y_pred, axis=1))
y_true = np.argmax(y_true, axis=1)
accuracy = (y_pred == y_true).mean()
print("accuracy: {}".format(
np.format_float_positional(accuracy, formatting)))
print("recall:\n{}".format(recall))
print("precision:\n{}".format(precision))
print("F1 score:\n{}".format(f1_score))
return (accuracy, recall, precision, f1_score)