gaussian-splatting/utils/graphics_utils.py
Matthieu Gendrin 5db5c254f4 Manage central point different from center of image
In some cases, calibration gives central point cx,cy != (0.5,0.5), or it
can be decided to crop the input images.
In those cases, it is necessary to split fovx to fovXleft,fovXright and fovy to fovYtop,fovYbottom

Note that the export of cameras to cameras.json merges those values back
to the basic fovx,fovy. This aims at avoiding the modification of
diff_gaussian_rasterization branch used for SIBR_gaussianViewer_app.

Signed-off-by: Matthieu Gendrin <matthieu.gendrin@orange.com>
2024-03-18 13:26:07 +01:00

87 lines
2.4 KiB
Python

#
# Copyright (C) 2023, Inria
# GRAPHDECO research group, https://team.inria.fr/graphdeco
# All rights reserved.
#
# This software is free for non-commercial, research and evaluation use
# under the terms of the LICENSE.md file.
#
# For inquiries contact george.drettakis@inria.fr
#
import torch
import math
import numpy as np
from typing import NamedTuple
class BasicPointCloud(NamedTuple):
points : np.array
colors : np.array
normals : np.array
def geom_transform_points(points, transf_matrix):
P, _ = points.shape
ones = torch.ones(P, 1, dtype=points.dtype, device=points.device)
points_hom = torch.cat([points, ones], dim=1)
points_out = torch.matmul(points_hom, transf_matrix.unsqueeze(0))
denom = points_out[..., 3:] + 0.0000001
return (points_out[..., :3] / denom).squeeze(dim=0)
def getWorld2View(R, t):
Rt = np.zeros((4, 4))
Rt[:3, :3] = R.transpose()
Rt[:3, 3] = t
Rt[3, 3] = 1.0
return np.float32(Rt)
def getWorld2View2(R, t, translate=np.array([.0, .0, .0]), scale=1.0):
Rt = np.zeros((4, 4))
Rt[:3, :3] = R.transpose()
Rt[:3, 3] = t
Rt[3, 3] = 1.0
C2W = np.linalg.inv(Rt)
cam_center = C2W[:3, 3]
cam_center = (cam_center + translate) * scale
C2W[:3, 3] = cam_center
Rt = np.linalg.inv(C2W)
return np.float32(Rt)
def getProjectionMatrix(znear, zfar, fovXleft, fovXright, fovYtop, fovYbottom):
tanHalfFovYtop = math.tan(fovYtop)
tanHalfFovYbottom = math.tan(fovYbottom)
tanHalfFovXleft = math.tan(fovXleft)
tanHalfFovXright = math.tan(fovXright)
top = tanHalfFovYtop * znear
bottom = tanHalfFovYbottom * znear
left = tanHalfFovXleft * znear
right = tanHalfFovXright * znear
P = torch.zeros(4, 4)
z_sign = 1.0
# note that my conventions are (fovXleft,fovYtop) negative and (fovXright,fovYbottom) positive
P[0, 0] = 2.0 * znear / (right - left)
P[1, 1] = 2.0 * znear / (bottom - top)
P[0, 2] = -(right + left) / (right - left)
P[1, 2] = -(top + bottom) / (bottom - top)
P[3, 2] = z_sign
P[2, 2] = z_sign * zfar / (zfar - znear)
P[2, 3] = -(zfar * znear) / (zfar - znear)
return P
def fov2focal(fov, pixels):
return sidefov2focal(fov / 2, pixels / 2)
def focal2fov(focal, pixels):
return 2 * focal2sidefov(focal, pixels / 2)
def sidefov2focal(sidefov, sidepixels):
return sidepixels / math.tan(sidefov)
def focal2sidefov(focal, sidepixels):
return math.atan(sidepixels / focal)