mirror of
https://github.com/graphdeco-inria/gaussian-splatting
synced 2024-11-22 08:18:17 +00:00
83 lines
3.8 KiB
Python
83 lines
3.8 KiB
Python
import os
|
|
import random
|
|
import json
|
|
from utils.system_utils import searchForMaxIteration
|
|
from scene.dataset_readers import sceneLoadTypeCallbacks
|
|
from scene.gaussian_model import GaussianModel
|
|
from arguments import ModelParams
|
|
from utils.camera_utils import cameraList_from_camInfos, camera_to_JSON
|
|
|
|
class Scene:
|
|
|
|
gaussians : GaussianModel
|
|
|
|
def __init__(self, args : ModelParams, gaussians : GaussianModel, load_iteration=None, shuffle=True, resolution_scales=[1.0]):
|
|
"""b
|
|
:param path: Path to colmap scene main folder.
|
|
"""
|
|
self.model_path = args.model_path
|
|
self.loaded_iter = None
|
|
self.gaussians = gaussians
|
|
|
|
if load_iteration:
|
|
if load_iteration == -1:
|
|
self.loaded_iter = searchForMaxIteration(os.path.join(self.model_path, "point_cloud"))
|
|
else:
|
|
self.loaded_iter = load_iteration
|
|
print("Loading trained model at iteration {}".format(self.loaded_iter))
|
|
|
|
self.train_cameras = {}
|
|
self.test_cameras = {}
|
|
|
|
if os.path.exists(os.path.join(args.source_path, "sparse")):
|
|
scene_info = sceneLoadTypeCallbacks["Colmap"](args.source_path, args.images, args.eval)
|
|
elif os.path.exists(os.path.join(args.source_path, "transforms_train.json")):
|
|
print("Found transforms_train.json file, assuming Blender data set!")
|
|
scene_info = sceneLoadTypeCallbacks["Blender"](args.source_path, args.white_background, args.eval)
|
|
else:
|
|
assert False, "Could not recognize scene type!"
|
|
|
|
if not self.loaded_iter:
|
|
with open(scene_info.ply_path, 'rb') as src_file, open(os.path.join(self.model_path, "input.ply") , 'wb') as dest_file:
|
|
dest_file.write(src_file.read())
|
|
json_cams = []
|
|
camlist = []
|
|
if scene_info.test_cameras:
|
|
camlist.extend(scene_info.test_cameras)
|
|
if scene_info.train_cameras:
|
|
camlist.extend(scene_info.train_cameras)
|
|
for id, cam in enumerate(camlist):
|
|
json_cams.append(camera_to_JSON(id, cam))
|
|
with open(os.path.join(self.model_path, "cameras.json"), 'w') as file:
|
|
json.dump(json_cams, file)
|
|
|
|
if shuffle:
|
|
random.shuffle(scene_info.train_cameras) # Multi-res consistent random shuffling
|
|
random.shuffle(scene_info.test_cameras) # Multi-res consistent random shuffling
|
|
|
|
self.cameras_extent = scene_info.nerf_normalization["radius"]
|
|
|
|
for resolution_scale in resolution_scales:
|
|
print("Loading Training Cameras")
|
|
self.train_cameras[resolution_scale] = cameraList_from_camInfos(scene_info.train_cameras, resolution_scale, args)
|
|
print("Loading Test Cameras")
|
|
self.test_cameras[resolution_scale] = cameraList_from_camInfos(scene_info.test_cameras, resolution_scale, args)
|
|
|
|
if self.loaded_iter:
|
|
self.gaussians.load_ply(os.path.join(self.model_path,
|
|
"point_cloud",
|
|
"iteration_" + str(self.loaded_iter),
|
|
"point_cloud.ply"),
|
|
og_number_points=len(scene_info.point_cloud.points))
|
|
else:
|
|
self.gaussians.create_from_pcd(scene_info.point_cloud, self.cameras_extent)
|
|
|
|
def save(self, iteration):
|
|
point_cloud_path = os.path.join(self.model_path, "point_cloud/iteration_{}".format(iteration))
|
|
self.gaussians.save_ply(os.path.join(point_cloud_path, "point_cloud.ply"))
|
|
|
|
def getTrainCameras(self, scale=1.0):
|
|
return self.train_cameras[scale]
|
|
|
|
def getTestCameras(self, scale=1.0):
|
|
return self.test_cameras[scale] |