mirror of
https://github.com/graphdeco-inria/gaussian-splatting
synced 2024-11-25 13:26:47 +00:00
605 lines
22 KiB
Python
605 lines
22 KiB
Python
# Copyright (c) 2023, ETH Zurich and UNC Chapel Hill.
|
|
# All rights reserved.
|
|
#
|
|
# Redistribution and use in source and binary forms, with or without
|
|
# modification, are permitted provided that the following conditions are met:
|
|
#
|
|
# * Redistributions of source code must retain the above copyright
|
|
# notice, this list of conditions and the following disclaimer.
|
|
#
|
|
# * Redistributions in binary form must reproduce the above copyright
|
|
# notice, this list of conditions and the following disclaimer in the
|
|
# documentation and/or other materials provided with the distribution.
|
|
#
|
|
# * Neither the name of ETH Zurich and UNC Chapel Hill nor the names of
|
|
# its contributors may be used to endorse or promote products derived
|
|
# from this software without specific prior written permission.
|
|
#
|
|
# THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
|
|
# AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
|
# IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
|
|
# ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDERS OR CONTRIBUTORS BE
|
|
# LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
|
|
# CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
|
|
# SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
|
|
# INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
|
|
# CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
|
|
# ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
|
|
# POSSIBILITY OF SUCH DAMAGE.
|
|
|
|
|
|
import os
|
|
import collections
|
|
import numpy as np
|
|
import struct
|
|
import argparse
|
|
|
|
|
|
CameraModel = collections.namedtuple(
|
|
"CameraModel", ["model_id", "model_name", "num_params"]
|
|
)
|
|
Camera = collections.namedtuple(
|
|
"Camera", ["id", "model", "width", "height", "params"]
|
|
)
|
|
BaseImage = collections.namedtuple(
|
|
"Image", ["id", "qvec", "tvec", "camera_id", "name", "xys", "point3D_ids"]
|
|
)
|
|
Point3D = collections.namedtuple(
|
|
"Point3D", ["id", "xyz", "rgb", "error", "image_ids", "point2D_idxs"]
|
|
)
|
|
|
|
|
|
class Image(BaseImage):
|
|
def qvec2rotmat(self):
|
|
return qvec2rotmat(self.qvec)
|
|
|
|
|
|
CAMERA_MODELS = {
|
|
CameraModel(model_id=0, model_name="SIMPLE_PINHOLE", num_params=3),
|
|
CameraModel(model_id=1, model_name="PINHOLE", num_params=4),
|
|
CameraModel(model_id=2, model_name="SIMPLE_RADIAL", num_params=4),
|
|
CameraModel(model_id=3, model_name="RADIAL", num_params=5),
|
|
CameraModel(model_id=4, model_name="OPENCV", num_params=8),
|
|
CameraModel(model_id=5, model_name="OPENCV_FISHEYE", num_params=8),
|
|
CameraModel(model_id=6, model_name="FULL_OPENCV", num_params=12),
|
|
CameraModel(model_id=7, model_name="FOV", num_params=5),
|
|
CameraModel(model_id=8, model_name="SIMPLE_RADIAL_FISHEYE", num_params=4),
|
|
CameraModel(model_id=9, model_name="RADIAL_FISHEYE", num_params=5),
|
|
CameraModel(model_id=10, model_name="THIN_PRISM_FISHEYE", num_params=12),
|
|
}
|
|
CAMERA_MODEL_IDS = dict(
|
|
[(camera_model.model_id, camera_model) for camera_model in CAMERA_MODELS]
|
|
)
|
|
CAMERA_MODEL_NAMES = dict(
|
|
[(camera_model.model_name, camera_model) for camera_model in CAMERA_MODELS]
|
|
)
|
|
|
|
|
|
def read_next_bytes(fid, num_bytes, format_char_sequence, endian_character="<"):
|
|
"""Read and unpack the next bytes from a binary file.
|
|
:param fid:
|
|
:param num_bytes: Sum of combination of {2, 4, 8}, e.g. 2, 6, 16, 30, etc.
|
|
:param format_char_sequence: List of {c, e, f, d, h, H, i, I, l, L, q, Q}.
|
|
:param endian_character: Any of {@, =, <, >, !}
|
|
:return: Tuple of read and unpacked values.
|
|
"""
|
|
data = fid.read(num_bytes)
|
|
return struct.unpack(endian_character + format_char_sequence, data)
|
|
|
|
|
|
def write_next_bytes(fid, data, format_char_sequence, endian_character="<"):
|
|
"""pack and write to a binary file.
|
|
:param fid:
|
|
:param data: data to send, if multiple elements are sent at the same time,
|
|
they should be encapsuled either in a list or a tuple
|
|
:param format_char_sequence: List of {c, e, f, d, h, H, i, I, l, L, q, Q}.
|
|
should be the same length as the data list or tuple
|
|
:param endian_character: Any of {@, =, <, >, !}
|
|
"""
|
|
if isinstance(data, (list, tuple)):
|
|
bytes = struct.pack(endian_character + format_char_sequence, *data)
|
|
else:
|
|
bytes = struct.pack(endian_character + format_char_sequence, data)
|
|
fid.write(bytes)
|
|
|
|
|
|
def read_cameras_text(path):
|
|
"""
|
|
see: src/colmap/scene/reconstruction.cc
|
|
void Reconstruction::WriteCamerasText(const std::string& path)
|
|
void Reconstruction::ReadCamerasText(const std::string& path)
|
|
"""
|
|
cameras = {}
|
|
with open(path, "r") as fid:
|
|
while True:
|
|
line = fid.readline()
|
|
if not line:
|
|
break
|
|
line = line.strip()
|
|
if len(line) > 0 and line[0] != "#":
|
|
elems = line.split()
|
|
camera_id = int(elems[0])
|
|
model = elems[1]
|
|
width = int(elems[2])
|
|
height = int(elems[3])
|
|
params = np.array(tuple(map(float, elems[4:])))
|
|
cameras[camera_id] = Camera(
|
|
id=camera_id,
|
|
model=model,
|
|
width=width,
|
|
height=height,
|
|
params=params,
|
|
)
|
|
return cameras
|
|
|
|
|
|
def read_cameras_binary(path_to_model_file):
|
|
"""
|
|
see: src/colmap/scene/reconstruction.cc
|
|
void Reconstruction::WriteCamerasBinary(const std::string& path)
|
|
void Reconstruction::ReadCamerasBinary(const std::string& path)
|
|
"""
|
|
cameras = {}
|
|
with open(path_to_model_file, "rb") as fid:
|
|
num_cameras = read_next_bytes(fid, 8, "Q")[0]
|
|
for _ in range(num_cameras):
|
|
camera_properties = read_next_bytes(
|
|
fid, num_bytes=24, format_char_sequence="iiQQ"
|
|
)
|
|
camera_id = camera_properties[0]
|
|
model_id = camera_properties[1]
|
|
model_name = CAMERA_MODEL_IDS[camera_properties[1]].model_name
|
|
width = camera_properties[2]
|
|
height = camera_properties[3]
|
|
num_params = CAMERA_MODEL_IDS[model_id].num_params
|
|
params = read_next_bytes(
|
|
fid,
|
|
num_bytes=8 * num_params,
|
|
format_char_sequence="d" * num_params,
|
|
)
|
|
cameras[camera_id] = Camera(
|
|
id=camera_id,
|
|
model=model_name,
|
|
width=width,
|
|
height=height,
|
|
params=np.array(params),
|
|
)
|
|
assert len(cameras) == num_cameras
|
|
return cameras
|
|
|
|
|
|
def write_cameras_text(cameras, path):
|
|
"""
|
|
see: src/colmap/scene/reconstruction.cc
|
|
void Reconstruction::WriteCamerasText(const std::string& path)
|
|
void Reconstruction::ReadCamerasText(const std::string& path)
|
|
"""
|
|
HEADER = (
|
|
"# Camera list with one line of data per camera:\n"
|
|
+ "# CAMERA_ID, MODEL, WIDTH, HEIGHT, PARAMS[]\n"
|
|
+ "# Number of cameras: {}\n".format(len(cameras))
|
|
)
|
|
with open(path, "w") as fid:
|
|
fid.write(HEADER)
|
|
for _, cam in cameras.items():
|
|
to_write = [cam.id, cam.model, cam.width, cam.height, *cam.params]
|
|
line = " ".join([str(elem) for elem in to_write])
|
|
fid.write(line + "\n")
|
|
|
|
|
|
def write_cameras_binary(cameras, path_to_model_file):
|
|
"""
|
|
see: src/colmap/scene/reconstruction.cc
|
|
void Reconstruction::WriteCamerasBinary(const std::string& path)
|
|
void Reconstruction::ReadCamerasBinary(const std::string& path)
|
|
"""
|
|
with open(path_to_model_file, "wb") as fid:
|
|
write_next_bytes(fid, len(cameras), "Q")
|
|
for _, cam in cameras.items():
|
|
model_id = CAMERA_MODEL_NAMES[cam.model].model_id
|
|
camera_properties = [cam.id, model_id, cam.width, cam.height]
|
|
write_next_bytes(fid, camera_properties, "iiQQ")
|
|
for p in cam.params:
|
|
write_next_bytes(fid, float(p), "d")
|
|
return cameras
|
|
|
|
|
|
def read_images_text(path):
|
|
"""
|
|
see: src/colmap/scene/reconstruction.cc
|
|
void Reconstruction::ReadImagesText(const std::string& path)
|
|
void Reconstruction::WriteImagesText(const std::string& path)
|
|
"""
|
|
images = {}
|
|
with open(path, "r") as fid:
|
|
while True:
|
|
line = fid.readline()
|
|
if not line:
|
|
break
|
|
line = line.strip()
|
|
if len(line) > 0 and line[0] != "#":
|
|
elems = line.split()
|
|
image_id = int(elems[0])
|
|
qvec = np.array(tuple(map(float, elems[1:5])))
|
|
tvec = np.array(tuple(map(float, elems[5:8])))
|
|
camera_id = int(elems[8])
|
|
image_name = elems[9]
|
|
elems = fid.readline().split()
|
|
xys = np.column_stack(
|
|
[
|
|
tuple(map(float, elems[0::3])),
|
|
tuple(map(float, elems[1::3])),
|
|
]
|
|
)
|
|
point3D_ids = np.array(tuple(map(int, elems[2::3])))
|
|
images[image_id] = Image(
|
|
id=image_id,
|
|
qvec=qvec,
|
|
tvec=tvec,
|
|
camera_id=camera_id,
|
|
name=image_name,
|
|
xys=xys,
|
|
point3D_ids=point3D_ids,
|
|
)
|
|
return images
|
|
|
|
|
|
def read_images_binary(path_to_model_file):
|
|
"""
|
|
see: src/colmap/scene/reconstruction.cc
|
|
void Reconstruction::ReadImagesBinary(const std::string& path)
|
|
void Reconstruction::WriteImagesBinary(const std::string& path)
|
|
"""
|
|
images = {}
|
|
with open(path_to_model_file, "rb") as fid:
|
|
num_reg_images = read_next_bytes(fid, 8, "Q")[0]
|
|
for _ in range(num_reg_images):
|
|
binary_image_properties = read_next_bytes(
|
|
fid, num_bytes=64, format_char_sequence="idddddddi"
|
|
)
|
|
image_id = binary_image_properties[0]
|
|
qvec = np.array(binary_image_properties[1:5])
|
|
tvec = np.array(binary_image_properties[5:8])
|
|
camera_id = binary_image_properties[8]
|
|
image_name = ""
|
|
current_char = read_next_bytes(fid, 1, "c")[0]
|
|
while current_char != b"\x00": # look for the ASCII 0 entry
|
|
image_name += current_char.decode("utf-8")
|
|
current_char = read_next_bytes(fid, 1, "c")[0]
|
|
num_points2D = read_next_bytes(
|
|
fid, num_bytes=8, format_char_sequence="Q"
|
|
)[0]
|
|
x_y_id_s = read_next_bytes(
|
|
fid,
|
|
num_bytes=24 * num_points2D,
|
|
format_char_sequence="ddq" * num_points2D,
|
|
)
|
|
xys = np.column_stack(
|
|
[
|
|
tuple(map(float, x_y_id_s[0::3])),
|
|
tuple(map(float, x_y_id_s[1::3])),
|
|
]
|
|
)
|
|
point3D_ids = np.array(tuple(map(int, x_y_id_s[2::3])))
|
|
images[image_id] = Image(
|
|
id=image_id,
|
|
qvec=qvec,
|
|
tvec=tvec,
|
|
camera_id=camera_id,
|
|
name=image_name,
|
|
xys=xys,
|
|
point3D_ids=point3D_ids,
|
|
)
|
|
return images
|
|
|
|
|
|
def write_images_text(images, path):
|
|
"""
|
|
see: src/colmap/scene/reconstruction.cc
|
|
void Reconstruction::ReadImagesText(const std::string& path)
|
|
void Reconstruction::WriteImagesText(const std::string& path)
|
|
"""
|
|
if len(images) == 0:
|
|
mean_observations = 0
|
|
else:
|
|
mean_observations = sum(
|
|
(len(img.point3D_ids) for _, img in images.items())
|
|
) / len(images)
|
|
HEADER = (
|
|
"# Image list with two lines of data per image:\n"
|
|
+ "# IMAGE_ID, QW, QX, QY, QZ, TX, TY, TZ, CAMERA_ID, NAME\n"
|
|
+ "# POINTS2D[] as (X, Y, POINT3D_ID)\n"
|
|
+ "# Number of images: {}, mean observations per image: {}\n".format(
|
|
len(images), mean_observations
|
|
)
|
|
)
|
|
|
|
with open(path, "w") as fid:
|
|
fid.write(HEADER)
|
|
for _, img in images.items():
|
|
image_header = [
|
|
img.id,
|
|
*img.qvec,
|
|
*img.tvec,
|
|
img.camera_id,
|
|
img.name,
|
|
]
|
|
first_line = " ".join(map(str, image_header))
|
|
fid.write(first_line + "\n")
|
|
|
|
points_strings = []
|
|
for xy, point3D_id in zip(img.xys, img.point3D_ids):
|
|
points_strings.append(" ".join(map(str, [*xy, point3D_id])))
|
|
fid.write(" ".join(points_strings) + "\n")
|
|
|
|
|
|
def write_images_binary(images, path_to_model_file):
|
|
"""
|
|
see: src/colmap/scene/reconstruction.cc
|
|
void Reconstruction::ReadImagesBinary(const std::string& path)
|
|
void Reconstruction::WriteImagesBinary(const std::string& path)
|
|
"""
|
|
with open(path_to_model_file, "wb") as fid:
|
|
write_next_bytes(fid, len(images), "Q")
|
|
for _, img in images.items():
|
|
write_next_bytes(fid, img.id, "i")
|
|
write_next_bytes(fid, img.qvec.tolist(), "dddd")
|
|
write_next_bytes(fid, img.tvec.tolist(), "ddd")
|
|
write_next_bytes(fid, img.camera_id, "i")
|
|
for char in img.name:
|
|
write_next_bytes(fid, char.encode("utf-8"), "c")
|
|
write_next_bytes(fid, b"\x00", "c")
|
|
write_next_bytes(fid, len(img.point3D_ids), "Q")
|
|
for xy, p3d_id in zip(img.xys, img.point3D_ids):
|
|
write_next_bytes(fid, [*xy, p3d_id], "ddq")
|
|
|
|
|
|
def read_points3D_text(path):
|
|
"""
|
|
see: src/colmap/scene/reconstruction.cc
|
|
void Reconstruction::ReadPoints3DText(const std::string& path)
|
|
void Reconstruction::WritePoints3DText(const std::string& path)
|
|
"""
|
|
points3D = {}
|
|
with open(path, "r") as fid:
|
|
while True:
|
|
line = fid.readline()
|
|
if not line:
|
|
break
|
|
line = line.strip()
|
|
if len(line) > 0 and line[0] != "#":
|
|
elems = line.split()
|
|
point3D_id = int(elems[0])
|
|
xyz = np.array(tuple(map(float, elems[1:4])))
|
|
rgb = np.array(tuple(map(int, elems[4:7])))
|
|
error = float(elems[7])
|
|
image_ids = np.array(tuple(map(int, elems[8::2])))
|
|
point2D_idxs = np.array(tuple(map(int, elems[9::2])))
|
|
points3D[point3D_id] = Point3D(
|
|
id=point3D_id,
|
|
xyz=xyz,
|
|
rgb=rgb,
|
|
error=error,
|
|
image_ids=image_ids,
|
|
point2D_idxs=point2D_idxs,
|
|
)
|
|
return points3D
|
|
|
|
|
|
def read_points3D_binary(path_to_model_file):
|
|
"""
|
|
see: src/colmap/scene/reconstruction.cc
|
|
void Reconstruction::ReadPoints3DBinary(const std::string& path)
|
|
void Reconstruction::WritePoints3DBinary(const std::string& path)
|
|
"""
|
|
points3D = {}
|
|
with open(path_to_model_file, "rb") as fid:
|
|
num_points = read_next_bytes(fid, 8, "Q")[0]
|
|
for _ in range(num_points):
|
|
binary_point_line_properties = read_next_bytes(
|
|
fid, num_bytes=43, format_char_sequence="QdddBBBd"
|
|
)
|
|
point3D_id = binary_point_line_properties[0]
|
|
xyz = np.array(binary_point_line_properties[1:4])
|
|
rgb = np.array(binary_point_line_properties[4:7])
|
|
error = np.array(binary_point_line_properties[7])
|
|
track_length = read_next_bytes(
|
|
fid, num_bytes=8, format_char_sequence="Q"
|
|
)[0]
|
|
track_elems = read_next_bytes(
|
|
fid,
|
|
num_bytes=8 * track_length,
|
|
format_char_sequence="ii" * track_length,
|
|
)
|
|
image_ids = np.array(tuple(map(int, track_elems[0::2])))
|
|
point2D_idxs = np.array(tuple(map(int, track_elems[1::2])))
|
|
points3D[point3D_id] = Point3D(
|
|
id=point3D_id,
|
|
xyz=xyz,
|
|
rgb=rgb,
|
|
error=error,
|
|
image_ids=image_ids,
|
|
point2D_idxs=point2D_idxs,
|
|
)
|
|
return points3D
|
|
|
|
|
|
def write_points3D_text(points3D, path):
|
|
"""
|
|
see: src/colmap/scene/reconstruction.cc
|
|
void Reconstruction::ReadPoints3DText(const std::string& path)
|
|
void Reconstruction::WritePoints3DText(const std::string& path)
|
|
"""
|
|
if len(points3D) == 0:
|
|
mean_track_length = 0
|
|
else:
|
|
mean_track_length = sum(
|
|
(len(pt.image_ids) for _, pt in points3D.items())
|
|
) / len(points3D)
|
|
HEADER = (
|
|
"# 3D point list with one line of data per point:\n"
|
|
+ "# POINT3D_ID, X, Y, Z, R, G, B, ERROR, TRACK[] as (IMAGE_ID, POINT2D_IDX)\n"
|
|
+ "# Number of points: {}, mean track length: {}\n".format(
|
|
len(points3D), mean_track_length
|
|
)
|
|
)
|
|
|
|
with open(path, "w") as fid:
|
|
fid.write(HEADER)
|
|
for _, pt in points3D.items():
|
|
point_header = [pt.id, *pt.xyz, *pt.rgb, pt.error]
|
|
fid.write(" ".join(map(str, point_header)) + " ")
|
|
track_strings = []
|
|
for image_id, point2D in zip(pt.image_ids, pt.point2D_idxs):
|
|
track_strings.append(" ".join(map(str, [image_id, point2D])))
|
|
fid.write(" ".join(track_strings) + "\n")
|
|
|
|
|
|
def write_points3D_binary(points3D, path_to_model_file):
|
|
"""
|
|
see: src/colmap/scene/reconstruction.cc
|
|
void Reconstruction::ReadPoints3DBinary(const std::string& path)
|
|
void Reconstruction::WritePoints3DBinary(const std::string& path)
|
|
"""
|
|
with open(path_to_model_file, "wb") as fid:
|
|
write_next_bytes(fid, len(points3D), "Q")
|
|
for _, pt in points3D.items():
|
|
write_next_bytes(fid, pt.id, "Q")
|
|
write_next_bytes(fid, pt.xyz.tolist(), "ddd")
|
|
write_next_bytes(fid, pt.rgb.tolist(), "BBB")
|
|
write_next_bytes(fid, pt.error, "d")
|
|
track_length = pt.image_ids.shape[0]
|
|
write_next_bytes(fid, track_length, "Q")
|
|
for image_id, point2D_id in zip(pt.image_ids, pt.point2D_idxs):
|
|
write_next_bytes(fid, [image_id, point2D_id], "ii")
|
|
|
|
|
|
def detect_model_format(path, ext):
|
|
if (
|
|
os.path.isfile(os.path.join(path, "cameras" + ext))
|
|
and os.path.isfile(os.path.join(path, "images" + ext))
|
|
and os.path.isfile(os.path.join(path, "points3D" + ext))
|
|
):
|
|
print("Detected model format: '" + ext + "'")
|
|
return True
|
|
|
|
return False
|
|
|
|
|
|
def read_model(path, ext=""):
|
|
# try to detect the extension automatically
|
|
if ext == "":
|
|
if detect_model_format(path, ".bin"):
|
|
ext = ".bin"
|
|
elif detect_model_format(path, ".txt"):
|
|
ext = ".txt"
|
|
else:
|
|
print("Provide model format: '.bin' or '.txt'")
|
|
return
|
|
|
|
if ext == ".txt":
|
|
cameras = read_cameras_text(os.path.join(path, "cameras" + ext))
|
|
images = read_images_text(os.path.join(path, "images" + ext))
|
|
points3D = read_points3D_text(os.path.join(path, "points3D") + ext)
|
|
else:
|
|
cameras = read_cameras_binary(os.path.join(path, "cameras" + ext))
|
|
images = read_images_binary(os.path.join(path, "images" + ext))
|
|
points3D = read_points3D_binary(os.path.join(path, "points3D") + ext)
|
|
return cameras, images, points3D
|
|
|
|
|
|
def write_model(cameras, images, points3D, path, ext=".bin"):
|
|
if ext == ".txt":
|
|
write_cameras_text(cameras, os.path.join(path, "cameras" + ext))
|
|
write_images_text(images, os.path.join(path, "images" + ext))
|
|
write_points3D_text(points3D, os.path.join(path, "points3D") + ext)
|
|
else:
|
|
write_cameras_binary(cameras, os.path.join(path, "cameras" + ext))
|
|
write_images_binary(images, os.path.join(path, "images" + ext))
|
|
write_points3D_binary(points3D, os.path.join(path, "points3D") + ext)
|
|
return cameras, images, points3D
|
|
|
|
|
|
def qvec2rotmat(qvec):
|
|
return np.array(
|
|
[
|
|
[
|
|
1 - 2 * qvec[2] ** 2 - 2 * qvec[3] ** 2,
|
|
2 * qvec[1] * qvec[2] - 2 * qvec[0] * qvec[3],
|
|
2 * qvec[3] * qvec[1] + 2 * qvec[0] * qvec[2],
|
|
],
|
|
[
|
|
2 * qvec[1] * qvec[2] + 2 * qvec[0] * qvec[3],
|
|
1 - 2 * qvec[1] ** 2 - 2 * qvec[3] ** 2,
|
|
2 * qvec[2] * qvec[3] - 2 * qvec[0] * qvec[1],
|
|
],
|
|
[
|
|
2 * qvec[3] * qvec[1] - 2 * qvec[0] * qvec[2],
|
|
2 * qvec[2] * qvec[3] + 2 * qvec[0] * qvec[1],
|
|
1 - 2 * qvec[1] ** 2 - 2 * qvec[2] ** 2,
|
|
],
|
|
]
|
|
)
|
|
|
|
|
|
def rotmat2qvec(R):
|
|
Rxx, Ryx, Rzx, Rxy, Ryy, Rzy, Rxz, Ryz, Rzz = R.flat
|
|
K = (
|
|
np.array(
|
|
[
|
|
[Rxx - Ryy - Rzz, 0, 0, 0],
|
|
[Ryx + Rxy, Ryy - Rxx - Rzz, 0, 0],
|
|
[Rzx + Rxz, Rzy + Ryz, Rzz - Rxx - Ryy, 0],
|
|
[Ryz - Rzy, Rzx - Rxz, Rxy - Ryx, Rxx + Ryy + Rzz],
|
|
]
|
|
)
|
|
/ 3.0
|
|
)
|
|
eigvals, eigvecs = np.linalg.eigh(K)
|
|
qvec = eigvecs[[3, 0, 1, 2], np.argmax(eigvals)]
|
|
if qvec[0] < 0:
|
|
qvec *= -1
|
|
return qvec
|
|
|
|
|
|
# def main():
|
|
# parser = argparse.ArgumentParser(
|
|
# description="Read and write COLMAP binary and text models"
|
|
# )
|
|
# parser.add_argument("--input_model", help="path to input model folder")
|
|
# parser.add_argument(
|
|
# "--input_format",
|
|
# choices=[".bin", ".txt"],
|
|
# help="input model format",
|
|
# default="",
|
|
# )
|
|
# parser.add_argument("--output_model", help="path to output model folder")
|
|
# parser.add_argument(
|
|
# "--output_format",
|
|
# choices=[".bin", ".txt"],
|
|
# help="outut model format",
|
|
# default=".txt",
|
|
# )
|
|
# args = parser.parse_args()
|
|
|
|
# cameras, images, points3D = read_model(
|
|
# path=args.input_model, ext=args.input_format
|
|
# )
|
|
|
|
# print("num_cameras:", len(cameras))
|
|
# print("num_images:", len(images))
|
|
# print("num_points3D:", len(points3D))
|
|
|
|
# if args.output_model is not None:
|
|
# write_model(
|
|
# cameras,
|
|
# images,
|
|
# points3D,
|
|
# path=args.output_model,
|
|
# ext=args.output_format,
|
|
# )
|
|
|
|
|
|
# if __name__ == "__main__":
|
|
# main()
|