mirror of
https://github.com/graphdeco-inria/gaussian-splatting
synced 2025-04-10 15:55:39 +00:00
88 lines
2.9 KiB
Python
88 lines
2.9 KiB
Python
#
|
||
# Copyright (C) 2023, Inria
|
||
# GRAPHDECO research group, https://team.inria.fr/graphdeco
|
||
# All rights reserved.
|
||
#
|
||
# This software is free for non-commercial, research and evaluation use
|
||
# under the terms of the LICENSE.md file.
|
||
#
|
||
# For inquiries contact george.drettakis@inria.fr
|
||
#
|
||
|
||
from scene.cameras import Camera
|
||
import numpy as np
|
||
from utils.general_utils import PILtoTorch
|
||
from utils.graphics_utils import fov2focal
|
||
|
||
WARNED = False
|
||
|
||
def loadCam(args, id, cam_info, resolution_scale):
|
||
orig_w, orig_h = cam_info.image.size
|
||
|
||
if args.resolution in [1, 2, 4, 8]:
|
||
resolution = round(orig_w/(resolution_scale * args.resolution)), round(orig_h/(resolution_scale * args.resolution))
|
||
else: # should be a type that converts to float
|
||
if args.resolution == -1:
|
||
if orig_w > 1600:
|
||
global WARNED
|
||
if not WARNED:
|
||
print("[ INFO ] Encountered quite large input images (>1.6K pixels width), rescaling to 1.6K.\n "
|
||
"If this is not desired, please explicitly specify '--resolution/-r' as 1")
|
||
WARNED = True
|
||
global_down = orig_w / 1600
|
||
else:
|
||
global_down = 1
|
||
else:
|
||
global_down = orig_w / args.resolution
|
||
|
||
scale = float(global_down) * float(resolution_scale)
|
||
resolution = (int(orig_w / scale), int(orig_h / scale))
|
||
|
||
resized_image_rgb = PILtoTorch(cam_info.image, resolution) # 调整图片比例,归一化,并转换通道为torch上的 (C, H, W)
|
||
|
||
gt_image = resized_image_rgb[:3, ...]
|
||
loaded_mask = None
|
||
|
||
if resized_image_rgb.shape[1] == 4:
|
||
loaded_mask = resized_image_rgb[3:4, ...]
|
||
|
||
return Camera(colmap_id=cam_info.uid, R=cam_info.R, T=cam_info.T,
|
||
FoVx=cam_info.FovX, FoVy=cam_info.FovY,
|
||
image=gt_image, gt_alpha_mask=loaded_mask,
|
||
image_name=cam_info.image_name, uid=id, data_device=args.data_device)
|
||
|
||
def cameraList_from_camInfos(cam_infos, resolution_scale, args):
|
||
'''
|
||
cam_infos: 训练或测试相机对象列表
|
||
resolution_scale: 不同分辨率列表
|
||
args: 高斯模型参数
|
||
'''
|
||
camera_list = []
|
||
|
||
for id, c in enumerate(cam_infos):
|
||
camera_list.append(loadCam(args, id, c, resolution_scale))
|
||
|
||
return camera_list
|
||
|
||
def camera_to_JSON(id, camera : Camera):
|
||
Rt = np.zeros((4, 4))
|
||
Rt[:3, :3] = camera.R.transpose()
|
||
Rt[:3, 3] = camera.T
|
||
Rt[3, 3] = 1.0
|
||
|
||
W2C = np.linalg.inv(Rt)
|
||
pos = W2C[:3, 3]
|
||
rot = W2C[:3, :3]
|
||
serializable_array_2d = [x.tolist() for x in rot]
|
||
camera_entry = {
|
||
'id' : id,
|
||
'img_name' : camera.image_name,
|
||
'width' : camera.width,
|
||
'height' : camera.height,
|
||
'position': pos.tolist(),
|
||
'rotation': serializable_array_2d,
|
||
'fy' : fov2focal(camera.FovY, camera.height),
|
||
'fx' : fov2focal(camera.FovX, camera.width)
|
||
}
|
||
return camera_entry
|