gaussian-splatting/augment.py
2025-03-13 15:13:40 +09:00

230 lines
13 KiB
Python

import argparse
import numpy as np
from tqdm import tqdm
import cv2
import os
from utils.colmap_utils import *
from utils.bundle_utils import cluster_cameras
from utils.aug_utils import *
def augment(colmap_path, image_path, augment_path, camera_order, visibility_aware_culling, compare_center_patch):
colmap_images, colmap_points3D, colmap_cameras = get_colmap_data(colmap_path)
np.seterr(divide='ignore', invalid='ignore')
sorted_keys = cluster_cameras(colmap_path, camera_order)
points3d = []
points3d_rgb = []
for key in sorted(colmap_points3D.keys()):
points3d.append(colmap_points3D[key].xyz)
points3d_rgb.append(colmap_points3D[key].rgb)
points3d = np.array(points3d)
points3d_rgb = np.array(points3d_rgb)
image_sample = cv2.imread(os.path.join(image_path, colmap_images[sorted_keys[0]].name))
intrinsics_camera = compute_intrinsics(colmap_cameras, image_sample.shape[1], image_sample.shape[0])
rotations_image, translations_image = compute_extrinsics(colmap_images)
count = 0
roots = {}
pbar = tqdm(range(len(sorted_keys)))
for view_idx in pbar:
view = sorted_keys[view_idx]
view_root, augmented_count = image_quadtree_augmentation(
view,
image_path,
colmap_cameras,
colmap_images,
colmap_points3D,
points3d,
points3d_rgb,
intrinsics_camera,
rotations_image,
translations_image,
visibility_aware_culling=visibility_aware_culling,
)
count += augmented_count
pbar.set_description(f"{count} points augmented")
roots[view] = view_root
for view1_idx in tqdm(range(len(sorted_keys))):
for view2_idx in [view1_idx + 6,
view1_idx + 5,
view1_idx + 4,
view1_idx + 3,
view1_idx + 2,
view1_idx + 1,
view1_idx - 1,
view1_idx - 2,
view1_idx - 3,
view1_idx - 4,
view1_idx - 5,
view1_idx - 6]:
if view2_idx > len(sorted_keys) - 1:
view2_idx = view2_idx - len(sorted_keys)
view1 = sorted_keys[view1_idx]
view2 = sorted_keys[view2_idx]
view1_root = roots[view1]
view2_root = roots[view2]
image_view2 = cv2.imread(os.path.join(image_path, colmap_images[view2].name))
view1_sample_points_world, view1_sample_points_rgb = transform_sample_3d(view1,
view1_root,
colmap_images,
colmap_cameras,
intrinsics_camera,
rotations_image,
translations_image)
view1_sample_points_view2, view1_sample_points_view2_depth = project_3d_to_2d(view1_sample_points_world,
intrinsics_camera[colmap_images[view2].camera_id],
np.concatenate((np.array(rotations_image[view2]),
np.array(translations_image[view2]).reshape(3,1)),
axis=1))
points3d_view2_pixcoord, points3d_view2_depth = project_3d_to_2d(points3d,
intrinsics_camera[colmap_images[view2].camera_id],
np.concatenate((np.array(rotations_image[view2]),
np.array(translations_image[view2]).reshape(3,1)),
axis=1))
matching_log = []
for i in range(view1_sample_points_world.shape[0]):
x, y = view1_sample_points_view2[i]
corresponding_node_type = None
error = None
# Case 1: Culling
if (view1_sample_points_view2_depth[i] < 0) | \
(view1_sample_points_view2[i, 0] < 0) | \
(view1_sample_points_view2[i, 0] >= image_view2.shape[1]) | \
(view1_sample_points_view2[i, 1] < 0) | \
(view1_sample_points_view2[i, 1] >= image_view2.shape[0]) | \
np.isnan(view1_sample_points_view2[i]).any(axis=0):
corresponding_node_type = "culled"
matching_log.append([view2, corresponding_node_type, error])
continue
# Case 2: Find corresponding node
view2_corresponding_node = find_leaf_node(view2_root, x, y)
if view2_corresponding_node is None:
corresponding_node_type = "missing"
matching_log.append([view2, corresponding_node_type, error])
continue
# Case 3: Process unoccupied node
if view2_corresponding_node.unoccupied:
if view2_corresponding_node.depth_interpolated:
error = np.linalg.norm(view1_sample_points_view2_depth[i] - view2_corresponding_node.sampled_point_depth)
if error < 0.2 * view2_corresponding_node.sampled_point_depth:
if compare_center_patch:
try:
view1_sample_point_patch = image_view2[int(view1_sample_points_view2[i, 1])-1:\
int(view1_sample_points_view2[i,1])+2,
int(view1_sample_points_view2[i, 0])-1:\
int(view1_sample_points_view2[i,0])+2]
view2_corresponding_node_patch = image_view2[int(view2_corresponding_node.sampled_point_uv[1])-1:\
int(view2_corresponding_node.sampled_point_uv[1])+2,
int(view2_corresponding_node.sampled_point_uv[0])-1:\
int(view2_corresponding_node.sampled_point_uv[0])+2]
if compare_local_texture(view1_sample_point_patch, view2_corresponding_node_patch) > 0.5:
corresponding_node_type = "sampledrejected"
else:
corresponding_node_type = "sampled"
except IndexError:
corresponding_node_type = "sampledrejected"
else:
corresponding_node_type = "sampled"
else:
corresponding_node_type = "sampledrejected"
else:
corresponding_node_type = "depthrejected"
else:
corresponding_3d_depth = np.array(view2_corresponding_node.points3d_depths)
error = np.linalg.norm(view1_sample_points_view2_depth[i] - corresponding_3d_depth)
if np.min(error) < 0.2 * corresponding_3d_depth[np.argmin(error)]:
if compare_center_patch:
try:
point_3d_coord = points3d_view2_pixcoord[view2_corresponding_node.points3d_indices[np.argmin(error)]]
point_3d_patch = image_view2[int(point_3d_coord[1])-1:\
int(point_3d_coord[1])+2,
int(point_3d_coord[0])-1:\
int(point_3d_coord[0])+2]
view1_sample_point_patch = image_view2[int(view1_sample_points_view2[i, 1])-1:\
int(view1_sample_points_view2[i,1])+2,
int(view1_sample_points_view2[i, 0])-1:\
int(view1_sample_points_view2[i,0])+2]
if compare_local_texture(view1_sample_point_patch, point_3d_patch) > 0.5:
corresponding_node_type = "rejectedoccupied3d"
else:
corresponding_node_type = "occupied3d"
except IndexError:
corresponding_node_type = "rejectedoccupied3d"
else:
corresponding_node_type = "occupied3d"
else:
corresponding_node_type = "rejectedoccupied3d"
# 모든 경우에 대해 로그 추가
matching_log.append([view2, corresponding_node_type, error])
node_index = 0
view1_leaf_nodes = []
gather_leaf_nodes(view1_root, view1_leaf_nodes)
for node in view1_leaf_nodes:
if node.unoccupied:
if node.depth_interpolated:
node.matching_log[view2] = matching_log[node_index]
if matching_log[node_index][1] in ["depthrejected", "missing", "culled"]:
None
else:
node.inference_count += 1
node.rejection_count += 1 if matching_log[node_index][1] in ["rejectedoccupied3d",
"sampledrejected"] else 0
node_index += 1
sampled_points_total = []
sampled_points_rgb_total = []
sampled_points_uv_total = []
sampled_points_neighbors_uv_total = []
for view in sorted_keys:
view_root = roots[view]
leaf_nodes = []
gather_leaf_nodes(view_root, leaf_nodes)
for node in leaf_nodes:
if node.unoccupied:
if node.depth_interpolated:
if node.inference_count > 0:
if node.inference_count - node.rejection_count >= 1:
sampled_points_total.append([node.sampled_point_world])
sampled_points_rgb_total.append([node.sampled_point_rgb])
sampled_points_uv_total.append([node.sampled_point_uv])
sampled_points_neighbors_uv_total.append([node.sampled_point_neighbours_uv])
print("total_Sampled_points: ", len(sampled_points_total))
xyz = np.concatenate(sampled_points_total, axis=0)
rgb = np.concatenate(sampled_points_rgb_total, axis=0)
last_index = write_points3D_colmap_binary(colmap_points3D, xyz, rgb, augment_path)
print("last_index: ", last_index)
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument("--colmap_path", type=str, required=True)
parser.add_argument("--image_path", type=str, required=True)
parser.add_argument("--augment_path", type=str, required=True)
parser.add_argument("--camera_order", type=str, required=True, default="covisibility")
parser.add_argument("--visibility_aware_culling",
action="store_true",
default=False)
parser.add_argument("--compare_center_patch",
action="store_true",
default=False)
args = parser.parse_args()
print("args.colmap_path", args.colmap_path)
print("args.image_path", args.image_path)
print("args.augment_path", args.augment_path)
print("args.camera_order", args.camera_order)
print("args.visibility_aware_culling", args.visibility_aware_culling)
print("args.compare_center_patch", args.compare_center_patch)
augment(args.colmap_path, args.image_path, args.augment_path, args.camera_order, args.visibility_aware_culling, args.compare_center_patch)