mirror of
https://github.com/graphdeco-inria/gaussian-splatting
synced 2024-11-24 04:53:57 +00:00
97 lines
3.6 KiB
Python
97 lines
3.6 KiB
Python
#
|
|
# Copyright (C) 2023, Inria
|
|
# GRAPHDECO research group, https://team.inria.fr/graphdeco
|
|
# All rights reserved.
|
|
#
|
|
# This software is free for non-commercial, research and evaluation use
|
|
# under the terms of the LICENSE.md file.
|
|
#
|
|
# For inquiries contact george.drettakis@inria.fr
|
|
#
|
|
|
|
from scene.cameras import Camera
|
|
import numpy as np
|
|
from utils.graphics_utils import fov2focal
|
|
from PIL import Image
|
|
import cv2
|
|
|
|
WARNED = False
|
|
|
|
def loadCam(args, id, cam_info, resolution_scale, is_nerf_synthetic, is_test_dataset):
|
|
image = Image.open(cam_info.image_path)
|
|
|
|
if cam_info.depth_path != "":
|
|
try:
|
|
if is_nerf_synthetic:
|
|
invdepthmap = cv2.imread(cam_info.depth_path, -1).astype(np.float32) / 512
|
|
else:
|
|
invdepthmap = cv2.imread(cam_info.depth_path, -1).astype(np.float32) / float(2**16)
|
|
|
|
except FileNotFoundError:
|
|
print(f"Error: The depth file at path '{cam_info.depth_path}' was not found.")
|
|
raise
|
|
except IOError:
|
|
print(f"Error: Unable to open the image file '{cam_info.depth_path}'. It may be corrupted or an unsupported format.")
|
|
raise
|
|
except Exception as e:
|
|
print(f"An unexpected error occurred when trying to read depth at {cam_info.depth_path}: {e}")
|
|
raise
|
|
else:
|
|
invdepthmap = None
|
|
|
|
orig_w, orig_h = image.size
|
|
if args.resolution in [1, 2, 4, 8]:
|
|
resolution = round(orig_w/(resolution_scale * args.resolution)), round(orig_h/(resolution_scale * args.resolution))
|
|
else: # should be a type that converts to float
|
|
if args.resolution == -1:
|
|
if orig_w > 1600:
|
|
global WARNED
|
|
if not WARNED:
|
|
print("[ INFO ] Encountered quite large input images (>1.6K pixels width), rescaling to 1.6K.\n "
|
|
"If this is not desired, please explicitly specify '--resolution/-r' as 1")
|
|
WARNED = True
|
|
global_down = orig_w / 1600
|
|
else:
|
|
global_down = 1
|
|
else:
|
|
global_down = orig_w / args.resolution
|
|
|
|
|
|
scale = float(global_down) * float(resolution_scale)
|
|
resolution = (int(orig_w / scale), int(orig_h / scale))
|
|
|
|
return Camera(resolution, colmap_id=cam_info.uid, R=cam_info.R, T=cam_info.T,
|
|
FoVx=cam_info.FovX, FoVy=cam_info.FovY, depth_params=cam_info.depth_params,
|
|
image=image, invdepthmap=invdepthmap,
|
|
image_name=cam_info.image_name, uid=id, data_device=args.data_device,
|
|
train_test_exp=args.train_test_exp, is_test_dataset=is_test_dataset, is_test_view=cam_info.is_test)
|
|
|
|
def cameraList_from_camInfos(cam_infos, resolution_scale, args, is_nerf_synthetic, is_test_dataset):
|
|
camera_list = []
|
|
|
|
for id, c in enumerate(cam_infos):
|
|
camera_list.append(loadCam(args, id, c, resolution_scale, is_nerf_synthetic, is_test_dataset))
|
|
|
|
return camera_list
|
|
|
|
def camera_to_JSON(id, camera : Camera):
|
|
Rt = np.zeros((4, 4))
|
|
Rt[:3, :3] = camera.R.transpose()
|
|
Rt[:3, 3] = camera.T
|
|
Rt[3, 3] = 1.0
|
|
|
|
W2C = np.linalg.inv(Rt)
|
|
pos = W2C[:3, 3]
|
|
rot = W2C[:3, :3]
|
|
serializable_array_2d = [x.tolist() for x in rot]
|
|
camera_entry = {
|
|
'id' : id,
|
|
'img_name' : camera.image_name,
|
|
'width' : camera.width,
|
|
'height' : camera.height,
|
|
'position': pos.tolist(),
|
|
'rotation': serializable_array_2d,
|
|
'fy' : fov2focal(camera.FovY, camera.height),
|
|
'fx' : fov2focal(camera.FovX, camera.width)
|
|
}
|
|
return camera_entry |