mirror of
https://github.com/graphdeco-inria/gaussian-splatting
synced 2024-11-22 00:08:02 +00:00
315 lines
12 KiB
Python
315 lines
12 KiB
Python
#
|
|
# Copyright (C) 2023, Inria
|
|
# GRAPHDECO research group, https://team.inria.fr/graphdeco
|
|
# All rights reserved.
|
|
#
|
|
# This software is free for non-commercial, research and evaluation use
|
|
# under the terms of the LICENSE.md file.
|
|
#
|
|
# For inquiries contact george.drettakis@inria.fr
|
|
#
|
|
|
|
import os
|
|
import sys
|
|
from PIL import Image
|
|
from typing import NamedTuple
|
|
from scene.colmap_loader import read_extrinsics_text, read_intrinsics_text, qvec2rotmat, \
|
|
read_extrinsics_binary, read_intrinsics_binary, read_points3D_binary, read_points3D_text
|
|
from utils.graphics_utils import getWorld2View2, focal2fov, fov2focal
|
|
import numpy as np
|
|
import json
|
|
from pathlib import Path
|
|
from plyfile import PlyData, PlyElement
|
|
from utils.sh_utils import SH2RGB
|
|
from scene.gaussian_model import BasicPointCloud
|
|
|
|
class CameraInfo(NamedTuple):
|
|
uid: int
|
|
R: np.array
|
|
T: np.array
|
|
FovY: np.array
|
|
FovX: np.array
|
|
depth_params: dict
|
|
image_path: str
|
|
image_name: str
|
|
depth_path: str
|
|
width: int
|
|
height: int
|
|
is_test: bool
|
|
|
|
class SceneInfo(NamedTuple):
|
|
point_cloud: BasicPointCloud
|
|
train_cameras: list
|
|
test_cameras: list
|
|
nerf_normalization: dict
|
|
ply_path: str
|
|
is_nerf_synthetic: bool
|
|
|
|
def getNerfppNorm(cam_info):
|
|
def get_center_and_diag(cam_centers):
|
|
cam_centers = np.hstack(cam_centers)
|
|
avg_cam_center = np.mean(cam_centers, axis=1, keepdims=True)
|
|
center = avg_cam_center
|
|
dist = np.linalg.norm(cam_centers - center, axis=0, keepdims=True)
|
|
diagonal = np.max(dist)
|
|
return center.flatten(), diagonal
|
|
|
|
cam_centers = []
|
|
|
|
for cam in cam_info:
|
|
W2C = getWorld2View2(cam.R, cam.T)
|
|
C2W = np.linalg.inv(W2C)
|
|
cam_centers.append(C2W[:3, 3:4])
|
|
|
|
center, diagonal = get_center_and_diag(cam_centers)
|
|
radius = diagonal * 1.1
|
|
|
|
translate = -center
|
|
|
|
return {"translate": translate, "radius": radius}
|
|
|
|
def readColmapCameras(cam_extrinsics, cam_intrinsics, depths_params, images_folder, depths_folder, test_cam_names_list):
|
|
cam_infos = []
|
|
for idx, key in enumerate(cam_extrinsics):
|
|
sys.stdout.write('\r')
|
|
# the exact output you're looking for:
|
|
sys.stdout.write("Reading camera {}/{}".format(idx+1, len(cam_extrinsics)))
|
|
sys.stdout.flush()
|
|
|
|
extr = cam_extrinsics[key]
|
|
intr = cam_intrinsics[extr.camera_id]
|
|
height = intr.height
|
|
width = intr.width
|
|
|
|
uid = intr.id
|
|
R = np.transpose(qvec2rotmat(extr.qvec))
|
|
T = np.array(extr.tvec)
|
|
|
|
if intr.model=="SIMPLE_PINHOLE":
|
|
focal_length_x = intr.params[0]
|
|
FovY = focal2fov(focal_length_x, height)
|
|
FovX = focal2fov(focal_length_x, width)
|
|
elif intr.model=="PINHOLE":
|
|
focal_length_x = intr.params[0]
|
|
focal_length_y = intr.params[1]
|
|
FovY = focal2fov(focal_length_y, height)
|
|
FovX = focal2fov(focal_length_x, width)
|
|
else:
|
|
assert False, "Colmap camera model not handled: only undistorted datasets (PINHOLE or SIMPLE_PINHOLE cameras) supported!"
|
|
|
|
n_remove = len(extr.name.split('.')[-1]) + 1
|
|
depth_params = None
|
|
if depths_params is not None:
|
|
try:
|
|
depth_params = depths_params[extr.name[:-n_remove]]
|
|
except:
|
|
print("\n", key, "not found in depths_params")
|
|
|
|
image_path = os.path.join(images_folder, extr.name)
|
|
image_name = extr.name
|
|
depth_path = os.path.join(depths_folder, f"{extr.name[:-n_remove]}.png") if depths_folder != "" else ""
|
|
|
|
cam_info = CameraInfo(uid=uid, R=R, T=T, FovY=FovY, FovX=FovX, depth_params=depth_params,
|
|
image_path=image_path, image_name=image_name, depth_path=depth_path,
|
|
width=width, height=height, is_test=image_name in test_cam_names_list)
|
|
cam_infos.append(cam_info)
|
|
|
|
sys.stdout.write('\n')
|
|
return cam_infos
|
|
|
|
def fetchPly(path):
|
|
plydata = PlyData.read(path)
|
|
vertices = plydata['vertex']
|
|
positions = np.vstack([vertices['x'], vertices['y'], vertices['z']]).T
|
|
colors = np.vstack([vertices['red'], vertices['green'], vertices['blue']]).T / 255.0
|
|
normals = np.vstack([vertices['nx'], vertices['ny'], vertices['nz']]).T
|
|
return BasicPointCloud(points=positions, colors=colors, normals=normals)
|
|
|
|
def storePly(path, xyz, rgb):
|
|
# Define the dtype for the structured array
|
|
dtype = [('x', 'f4'), ('y', 'f4'), ('z', 'f4'),
|
|
('nx', 'f4'), ('ny', 'f4'), ('nz', 'f4'),
|
|
('red', 'u1'), ('green', 'u1'), ('blue', 'u1')]
|
|
|
|
normals = np.zeros_like(xyz)
|
|
|
|
elements = np.empty(xyz.shape[0], dtype=dtype)
|
|
attributes = np.concatenate((xyz, normals, rgb), axis=1)
|
|
elements[:] = list(map(tuple, attributes))
|
|
|
|
# Create the PlyData object and write to file
|
|
vertex_element = PlyElement.describe(elements, 'vertex')
|
|
ply_data = PlyData([vertex_element])
|
|
ply_data.write(path)
|
|
|
|
def readColmapSceneInfo(path, images, depths, eval, train_test_exp, llffhold=8):
|
|
try:
|
|
cameras_extrinsic_file = os.path.join(path, "sparse/0", "images.bin")
|
|
cameras_intrinsic_file = os.path.join(path, "sparse/0", "cameras.bin")
|
|
cam_extrinsics = read_extrinsics_binary(cameras_extrinsic_file)
|
|
cam_intrinsics = read_intrinsics_binary(cameras_intrinsic_file)
|
|
except:
|
|
cameras_extrinsic_file = os.path.join(path, "sparse/0", "images.txt")
|
|
cameras_intrinsic_file = os.path.join(path, "sparse/0", "cameras.txt")
|
|
cam_extrinsics = read_extrinsics_text(cameras_extrinsic_file)
|
|
cam_intrinsics = read_intrinsics_text(cameras_intrinsic_file)
|
|
|
|
depth_params_file = os.path.join(path, "sparse/0", "depth_params.json")
|
|
## if depth_params_file isnt there AND depths file is here -> throw error
|
|
depths_params = None
|
|
if depths != "":
|
|
try:
|
|
with open(depth_params_file, "r") as f:
|
|
depths_params = json.load(f)
|
|
all_scales = np.array([depths_params[key]["scale"] for key in depths_params])
|
|
if (all_scales > 0).sum():
|
|
med_scale = np.median(all_scales[all_scales > 0])
|
|
else:
|
|
med_scale = 0
|
|
for key in depths_params:
|
|
depths_params[key]["med_scale"] = med_scale
|
|
|
|
except FileNotFoundError:
|
|
print(f"Error: depth_params.json file not found at path '{depth_params_file}'.")
|
|
sys.exit(1)
|
|
except Exception as e:
|
|
print(f"An unexpected error occurred when trying to open depth_params.json file: {e}")
|
|
sys.exit(1)
|
|
|
|
if eval:
|
|
if "360" in path:
|
|
llffhold = 8
|
|
if llffhold:
|
|
print("------------LLFF HOLD-------------")
|
|
cam_names = [cam_extrinsics[cam_id].name for cam_id in cam_extrinsics]
|
|
cam_names = sorted(cam_names)
|
|
test_cam_names_list = [name for idx, name in enumerate(cam_names) if idx % llffhold == 0]
|
|
else:
|
|
with open(os.path.join(path, "sparse/0", "test.txt"), 'r') as file:
|
|
test_cam_names_list = [line.strip() for line in file]
|
|
else:
|
|
test_cam_names_list = []
|
|
|
|
reading_dir = "images" if images == None else images
|
|
cam_infos_unsorted = readColmapCameras(
|
|
cam_extrinsics=cam_extrinsics, cam_intrinsics=cam_intrinsics, depths_params=depths_params,
|
|
images_folder=os.path.join(path, reading_dir),
|
|
depths_folder=os.path.join(path, depths) if depths != "" else "", test_cam_names_list=test_cam_names_list)
|
|
cam_infos = sorted(cam_infos_unsorted.copy(), key = lambda x : x.image_name)
|
|
|
|
train_cam_infos = [c for c in cam_infos if train_test_exp or not c.is_test]
|
|
test_cam_infos = [c for c in cam_infos if c.is_test]
|
|
|
|
nerf_normalization = getNerfppNorm(train_cam_infos)
|
|
|
|
ply_path = os.path.join(path, "sparse/0/points3D.ply")
|
|
bin_path = os.path.join(path, "sparse/0/points3D.bin")
|
|
txt_path = os.path.join(path, "sparse/0/points3D.txt")
|
|
if not os.path.exists(ply_path):
|
|
print("Converting point3d.bin to .ply, will happen only the first time you open the scene.")
|
|
try:
|
|
xyz, rgb, _ = read_points3D_binary(bin_path)
|
|
except:
|
|
xyz, rgb, _ = read_points3D_text(txt_path)
|
|
storePly(ply_path, xyz, rgb)
|
|
try:
|
|
pcd = fetchPly(ply_path)
|
|
except:
|
|
pcd = None
|
|
|
|
scene_info = SceneInfo(point_cloud=pcd,
|
|
train_cameras=train_cam_infos,
|
|
test_cameras=test_cam_infos,
|
|
nerf_normalization=nerf_normalization,
|
|
ply_path=ply_path,
|
|
is_nerf_synthetic=False)
|
|
return scene_info
|
|
|
|
def readCamerasFromTransforms(path, transformsfile, depths_folder, white_background, is_test, extension=".png"):
|
|
cam_infos = []
|
|
|
|
with open(os.path.join(path, transformsfile)) as json_file:
|
|
contents = json.load(json_file)
|
|
fovx = contents["camera_angle_x"]
|
|
|
|
frames = contents["frames"]
|
|
for idx, frame in enumerate(frames):
|
|
cam_name = os.path.join(path, frame["file_path"] + extension)
|
|
|
|
# NeRF 'transform_matrix' is a camera-to-world transform
|
|
c2w = np.array(frame["transform_matrix"])
|
|
# change from OpenGL/Blender camera axes (Y up, Z back) to COLMAP (Y down, Z forward)
|
|
c2w[:3, 1:3] *= -1
|
|
|
|
# get the world-to-camera transform and set R, T
|
|
w2c = np.linalg.inv(c2w)
|
|
R = np.transpose(w2c[:3,:3]) # R is stored transposed due to 'glm' in CUDA code
|
|
T = w2c[:3, 3]
|
|
|
|
image_path = os.path.join(path, cam_name)
|
|
image_name = Path(cam_name).stem
|
|
image = Image.open(image_path)
|
|
|
|
im_data = np.array(image.convert("RGBA"))
|
|
|
|
bg = np.array([1,1,1]) if white_background else np.array([0, 0, 0])
|
|
|
|
norm_data = im_data / 255.0
|
|
arr = norm_data[:,:,:3] * norm_data[:, :, 3:4] + bg * (1 - norm_data[:, :, 3:4])
|
|
image = Image.fromarray(np.array(arr*255.0, dtype=np.byte), "RGB")
|
|
|
|
fovy = focal2fov(fov2focal(fovx, image.size[0]), image.size[1])
|
|
FovY = fovy
|
|
FovX = fovx
|
|
|
|
depth_path = os.path.join(depths_folder, f"{image_name}.png") if depths_folder != "" else ""
|
|
|
|
cam_infos.append(CameraInfo(uid=idx, R=R, T=T, FovY=FovY, FovX=FovX,
|
|
image_path=image_path, image_name=image_name,
|
|
width=image.size[0], height=image.size[1], depth_path=depth_path, depth_params=None, is_test=is_test))
|
|
|
|
return cam_infos
|
|
|
|
def readNerfSyntheticInfo(path, white_background, depths, eval, extension=".png"):
|
|
|
|
depths_folder=os.path.join(path, depths) if depths != "" else ""
|
|
print("Reading Training Transforms")
|
|
train_cam_infos = readCamerasFromTransforms(path, "transforms_train.json", depths_folder, white_background, False, extension)
|
|
print("Reading Test Transforms")
|
|
test_cam_infos = readCamerasFromTransforms(path, "transforms_test.json", depths_folder, white_background, True, extension)
|
|
|
|
if not eval:
|
|
train_cam_infos.extend(test_cam_infos)
|
|
test_cam_infos = []
|
|
|
|
nerf_normalization = getNerfppNorm(train_cam_infos)
|
|
|
|
ply_path = os.path.join(path, "points3d.ply")
|
|
if not os.path.exists(ply_path):
|
|
# Since this data set has no colmap data, we start with random points
|
|
num_pts = 100_000
|
|
print(f"Generating random point cloud ({num_pts})...")
|
|
|
|
# We create random points inside the bounds of the synthetic Blender scenes
|
|
xyz = np.random.random((num_pts, 3)) * 2.6 - 1.3
|
|
shs = np.random.random((num_pts, 3)) / 255.0
|
|
pcd = BasicPointCloud(points=xyz, colors=SH2RGB(shs), normals=np.zeros((num_pts, 3)))
|
|
|
|
storePly(ply_path, xyz, SH2RGB(shs) * 255)
|
|
try:
|
|
pcd = fetchPly(ply_path)
|
|
except:
|
|
pcd = None
|
|
|
|
scene_info = SceneInfo(point_cloud=pcd,
|
|
train_cameras=train_cam_infos,
|
|
test_cameras=test_cam_infos,
|
|
nerf_normalization=nerf_normalization,
|
|
ply_path=ply_path,
|
|
is_nerf_synthetic=True)
|
|
return scene_info
|
|
|
|
sceneLoadTypeCallbacks = {
|
|
"Colmap": readColmapSceneInfo,
|
|
"Blender" : readNerfSyntheticInfo
|
|
} |