# # Copyright (C) 2023, Inria # GRAPHDECO research group, https://team.inria.fr/graphdeco # All rights reserved. # # This software is free for non-commercial, research and evaluation use # under the terms of the LICENSE.md file. # # For inquiries contact george.drettakis@inria.fr # import torch from scene import Scene import os from tqdm import tqdm from os import makedirs from gaussian_renderer import render import torchvision from utils.general_utils import safe_state from argparse import ArgumentParser from arguments import ModelParams, PipelineParams, get_combined_args from gaussian_renderer import GaussianModel def render_set(model_path, name, iteration, views, gaussians, pipeline, background, train_test_exp): render_path = os.path.join(model_path, name, "ours_{}".format(iteration), "renders") gts_path = os.path.join(model_path, name, "ours_{}".format(iteration), "gt") makedirs(render_path, exist_ok=True) makedirs(gts_path, exist_ok=True) for idx, view in enumerate(tqdm(views, desc="Rendering progress")): rendering = render(view, gaussians, pipeline, background, use_trained_exp=train_test_exp)["render"] gt = view.original_image[0:3, :, :] torchvision.utils.save_image(rendering, os.path.join(render_path, '{0:05d}'.format(idx) + ".png")) torchvision.utils.save_image(gt, os.path.join(gts_path, '{0:05d}'.format(idx) + ".png")) def render_sets(dataset : ModelParams, iteration : int, pipeline : PipelineParams, skip_train : bool, skip_test : bool): with torch.no_grad(): gaussians = GaussianModel(dataset.sh_degree) scene = Scene(dataset, gaussians, load_iteration=iteration, shuffle=False) bg_color = [1,1,1] if dataset.white_background else [0, 0, 0] background = torch.tensor(bg_color, dtype=torch.float32, device="cuda") if not skip_train: render_set(dataset.model_path, "train", scene.loaded_iter, scene.getTrainCameras(), gaussians, pipeline, background, dataset.train_test_exp) if not skip_test: render_set(dataset.model_path, "test", scene.loaded_iter, scene.getTestCameras(), gaussians, pipeline, background, dataset.train_test_exp) if __name__ == "__main__": # Set up command line argument parser parser = ArgumentParser(description="Testing script parameters") model = ModelParams(parser, sentinel=True) pipeline = PipelineParams(parser) parser.add_argument("--iteration", default=-1, type=int) parser.add_argument("--skip_train", action="store_true") parser.add_argument("--skip_test", action="store_true") parser.add_argument("--quiet", action="store_true") args = get_combined_args(parser) print("Rendering " + args.model_path) # Initialize system state (RNG) safe_state(args.quiet) render_sets(model.extract(args), args.iteration, pipeline.extract(args), args.skip_train, args.skip_test)