# # Copyright (C) 2023, Inria # GRAPHDECO research group, https://team.inria.fr/graphdeco # All rights reserved. # # This software is free for non-commercial, research and evaluation use # under the terms of the LICENSE.md file. # # For inquiries contact george.drettakis@inria.fr # from scene.cameras import Camera import numpy as np from utils.general_utils import PILtoTorch, get_data_dtype from utils.graphics_utils import fov2focal WARNED = False def loadCam(args, id, cam_info, resolution_scale): orig_w, orig_h = cam_info.image.size if args.resolution in [1, 2, 4, 8]: resolution = round(orig_w/(resolution_scale * args.resolution)), round(orig_h/(resolution_scale * args.resolution)) else: # should be a type that converts to float if args.resolution == -1: if orig_w > 1600: global WARNED if not WARNED: print("[ INFO ] Encountered quite large input images (>1.6K pixels width), rescaling to 1.6K.\n " "If this is not desired, please explicitly specify '--resolution/-r' as 1") WARNED = True global_down = orig_w / 1600 else: global_down = 1 else: global_down = orig_w / args.resolution scale = float(global_down) * float(resolution_scale) resolution = (int(orig_w / scale), int(orig_h / scale)) resized_image_rgb = PILtoTorch(cam_info.image, resolution) # resized_image_rgb = resized_image_rgb.to(get_data_dtype(args.data_dtype)) gt_image = resized_image_rgb[:3, ...] loaded_mask = None if resized_image_rgb.shape[1] == 4: loaded_mask = resized_image_rgb[3:4, ...] return Camera(colmap_id=cam_info.uid, R=cam_info.R, T=cam_info.T, FoVx=cam_info.FovX, FoVy=cam_info.FovY, image=gt_image, gt_alpha_mask=loaded_mask, image_name=cam_info.image_name, uid=id, data_device=args.data_device, data_dtype=get_data_dtype(args.data_dtype), store_images_as_uint8=args.store_images_as_uint8) def cameraList_from_camInfos(cam_infos, resolution_scale, args): camera_list = [] for id, c in enumerate(cam_infos): camera_list.append(loadCam(args, id, c, resolution_scale)) return camera_list def camera_to_JSON(id, camera : Camera): Rt = np.zeros((4, 4)) Rt[:3, :3] = camera.R.transpose() Rt[:3, 3] = camera.T Rt[3, 3] = 1.0 W2C = np.linalg.inv(Rt) pos = W2C[:3, 3] rot = W2C[:3, :3] serializable_array_2d = [x.tolist() for x in rot] camera_entry = { 'id' : id, 'img_name' : camera.image_name, 'width' : camera.width, 'height' : camera.height, 'position': pos.tolist(), 'rotation': serializable_array_2d, 'fy' : fov2focal(camera.FovY, camera.height), 'fx' : fov2focal(camera.FovX, camera.width) } return camera_entry