import torch import math import numpy as np from typing import NamedTuple class BasicPointCloud(NamedTuple): points : np.array colors : np.array normals : np.array def geom_transform_points(points, transf_matrix): P, _ = points.shape ones = torch.ones(P, 1, dtype=points.dtype, device=points.device) points_hom = torch.cat([points, ones], dim=1) points_out = torch.matmul(points_hom, transf_matrix.unsqueeze(0)) denom = points_out[..., 3:] + 0.0000001 return (points_out[..., :3] / denom).squeeze(dim=0) def getWorld2View(R, t): Rt = np.zeros((4, 4)) Rt[:3, :3] = R.transpose() Rt[:3, 3] = t Rt[3, 3] = 1.0 return np.float32(Rt) def getWorld2View2(R, t, translate=np.array([.0, .0, .0]), scale=1.0): Rt = np.zeros((4, 4)) Rt[:3, :3] = R.transpose() Rt[:3, 3] = t Rt[3, 3] = 1.0 C2W = np.linalg.inv(Rt) cam_center = C2W[:3, 3] cam_center = (cam_center + translate) * scale C2W[:3, 3] = cam_center Rt = np.linalg.inv(C2W) return np.float32(Rt) def getProjectionMatrix(znear, zfar, fovX, fovY): tanHalfFovY = math.tan((fovY / 2)) tanHalfFovX = math.tan((fovX / 2)) top = tanHalfFovY * znear bottom = -top right = tanHalfFovX * znear left = -right P = torch.zeros(4, 4) z_sign = 1.0 P[0, 0] = 2.0 * znear / (right - left) P[1, 1] = 2.0 * znear / (top - bottom) P[0, 2] = (right + left) / (right - left) P[1, 2] = (top + bottom) / (top - bottom) P[3, 2] = z_sign P[2, 2] = z_sign * zfar / (zfar - znear) P[2, 3] = -(zfar * znear) / (zfar - znear) return P def fov2focal(fov, pixels): return pixels / (2 * math.tan(fov / 2)) def focal2fov(focal, pixels): return 2*math.atan(pixels/(2*focal))