import os import random import json from utils.system_utils import searchForMaxIteration from scene.dataset_readers import sceneLoadTypeCallbacks from scene.gaussian_model import GaussianModel from arguments import ModelParams from utils.camera_utils import cameraList_from_camInfos, camera_to_JSON class Scene: gaussians : GaussianModel def __init__(self, args : ModelParams, gaussians : GaussianModel, load_iteration=None, shuffle=True, resolution_scales=[1.0]): """b :param path: Path to colmap scene main folder. """ self.model_path = args.model_path self.loaded_iter = None self.gaussians = gaussians if load_iteration: if load_iteration == -1: self.loaded_iter = searchForMaxIteration(os.path.join(self.model_path, "point_cloud")) else: self.loaded_iter = load_iteration print("Loading trained model at iteration {}".format(self.loaded_iter)) self.train_cameras = {} self.test_cameras = {} if os.path.exists(os.path.join(args.source_path, "sparse")): scene_info = sceneLoadTypeCallbacks["Colmap"](args.source_path, args.images, args.eval) elif os.path.exists(os.path.join(args.source_path, "transforms_train.json")): print("Found transforms_train.json file, assuming Blender data set!") scene_info = sceneLoadTypeCallbacks["Blender"](args.source_path, args.white_background, args.eval) else: assert False, "Could not recognize scene type!" if not self.loaded_iter: with open(scene_info.ply_path, 'rb') as src_file, open(os.path.join(self.model_path, "input.ply") , 'wb') as dest_file: dest_file.write(src_file.read()) json_cams = [] camlist = [] if scene_info.test_cameras: camlist.extend(scene_info.test_cameras) if scene_info.train_cameras: camlist.extend(scene_info.train_cameras) for id, cam in enumerate(camlist): json_cams.append(camera_to_JSON(id, cam)) with open(os.path.join(self.model_path, "cameras.json"), 'w') as file: json.dump(json_cams, file) if shuffle: random.shuffle(scene_info.train_cameras) # Multi-res consistent random shuffling random.shuffle(scene_info.test_cameras) # Multi-res consistent random shuffling self.cameras_extent = scene_info.nerf_normalization["radius"] for resolution_scale in resolution_scales: print("Loading Training Cameras") self.train_cameras[resolution_scale] = cameraList_from_camInfos(scene_info.train_cameras, resolution_scale, args) print("Loading Test Cameras") self.test_cameras[resolution_scale] = cameraList_from_camInfos(scene_info.test_cameras, resolution_scale, args) if self.loaded_iter: self.gaussians.load_ply(os.path.join(self.model_path, "point_cloud", "iteration_" + str(self.loaded_iter), "point_cloud.ply"), og_number_points=len(scene_info.point_cloud.points)) else: self.gaussians.create_from_pcd(scene_info.point_cloud, self.cameras_extent) def save(self, iteration): point_cloud_path = os.path.join(self.model_path, "point_cloud/iteration_{}".format(iteration)) self.gaussians.save_ply(os.path.join(point_cloud_path, "point_cloud.ply")) def getTrainCameras(self, scale=1.0): return self.train_cameras[scale] def getTestCameras(self, scale=1.0): return self.test_cameras[scale]