from scene.cameras import Camera import numpy as np from utils.general_utils import PILtoTorch from utils.graphics_utils import fov2focal def loadCam(args, id, cam_info, resolution_scale): orig_w, orig_h = cam_info.image.size if args.resolution in [1, 2, 4, 8]: resolution = round(orig_w/(resolution_scale * args.resolution)), round(orig_h/(resolution_scale * args.resolution)) else: # should be a type that converts to float global_down = orig_w/args.resolution scale = float(global_down) * float(resolution_scale) resolution = (int(orig_w / scale), int(orig_h / scale)) resized_image_rgb = PILtoTorch(cam_info.image, resolution) gt_image = resized_image_rgb[:3, ...] loaded_mask = None if resized_image_rgb.shape[1] == 4: loaded_mask = resized_image_rgb[3:4, ...] return Camera(colmap_id=cam_info.uid, R=cam_info.R, T=cam_info.T, FoVx=cam_info.FovX, FoVy=cam_info.FovY, image=gt_image, gt_alpha_mask=loaded_mask, image_name=cam_info.image_name, uid=id) def cameraList_from_camInfos(cam_infos, resolution_scale, args): camera_list = [] for id, c in enumerate(cam_infos): camera_list.append(loadCam(args, id, c, resolution_scale)) return camera_list def camera_to_JSON(id, camera : Camera): Rt = np.zeros((4, 4)) Rt[:3, :3] = camera.R.transpose() Rt[:3, 3] = camera.T Rt[3, 3] = 1.0 W2C = np.linalg.inv(Rt) pos = W2C[:3, 3] rot = W2C[:3, :3] serializable_array_2d = [x.tolist() for x in rot] camera_entry = { 'id' : id, 'img_name' : camera.image_name, 'width' : camera.width, 'height' : camera.height, 'position': pos.tolist(), 'rotation': serializable_array_2d, 'fy' : fov2focal(camera.FovY, camera.height), 'fx' : fov2focal(camera.FovX, camera.width) } return camera_entry