# # Copyright (C) 2023, Inria # GRAPHDECO research group, https://team.inria.fr/graphdeco # All rights reserved. # # This software is free for non-commercial, research and evaluation use # under the terms of the LICENSE.md file. # # For inquiries contact george.drettakis@inria.fr # import torch import sys from datetime import datetime import numpy as np import random def inverse_sigmoid(x): return torch.log(x/(1-x)) def PILtoTorch(pil_image, resolution): resized_image_PIL = pil_image.resize(resolution) resized_image = torch.from_numpy(np.array(resized_image_PIL)) / 255.0 if len(resized_image.shape) == 3: return resized_image.permute(2, 0, 1) else: return resized_image.unsqueeze(dim=-1).permute(2, 0, 1) def get_expon_lr_func( lr_init, lr_final, lr_delay_steps=0, lr_delay_mult=1.0, max_steps=1000000 ): """ Copied from Plenoxels Continuous learning rate decay function. Adapted from JaxNeRF The returned rate is lr_init when step=0 and lr_final when step=max_steps, and is log-linearly interpolated elsewhere (equivalent to exponential decay). If lr_delay_steps>0 then the learning rate will be scaled by some smooth function of lr_delay_mult, such that the initial learning rate is lr_init*lr_delay_mult at the beginning of optimization but will be eased back to the normal learning rate when steps>lr_delay_steps. :param conf: config subtree 'lr' or similar :param max_steps: int, the number of steps during optimization. :return HoF which takes step as input """ """ 创建一个学习率调度函数,该函数根据训练进度动态调整学习率 :param lr_init: 初始学习率 :param lr_final: 最终学习率 :param lr_delay_steps: 学习率延迟步数,在这些步数内学习率将被降低 :param lr_delay_mult: 学习率延迟乘数,用于计算初始延迟学习率 :param max_steps: 最大步数,用于规范化训练进度 :return: 一个函数,根据当前步数返回调整后的学习率 """ def helper(step): # 如果步数小于0或学习率为0,直接返回0,表示不进行优化 if step < 0 or (lr_init == 0.0 and lr_final == 0.0): # Disable this parameter return 0.0 # 如果设置了学习率延迟步数,计算延迟调整后的学习率 if lr_delay_steps > 0: # A kind of reverse cosine decay. delay_rate = lr_delay_mult + (1 - lr_delay_mult) * np.sin( 0.5 * np.pi * np.clip(step / lr_delay_steps, 0, 1) ) else: delay_rate = 1.0 # 根据步数计算学习率的对数线性插值,实现从初始学习率到最终学习率的平滑过渡 t = np.clip(step / max_steps, 0, 1) log_lerp = np.exp(np.log(lr_init) * (1 - t) + np.log(lr_final) * t) # 返回调整后的学习率 return delay_rate * log_lerp return helper def strip_lowerdiag(L): """ 从协方差矩阵中提取六个独立参数 :param L: 协方差矩阵 :return: 六个独立参数组成的张量 """ uncertainty = torch.zeros((L.shape[0], 6), dtype=torch.float, device="cuda") # 提取协方差矩阵的独立元素 uncertainty[:, 0] = L[:, 0, 0] uncertainty[:, 1] = L[:, 0, 1] uncertainty[:, 2] = L[:, 0, 2] uncertainty[:, 3] = L[:, 1, 1] uncertainty[:, 4] = L[:, 1, 2] uncertainty[:, 5] = L[:, 2, 2] return uncertainty def strip_symmetric(sym): """ 提取协方差矩阵的对称部分 sym: 协方差矩阵 return: 对称部分 """ return strip_lowerdiag(sym) def build_rotation(r): ''' 从旋转四元数 -> 单位化 -> 3x3的旋转矩阵 ''' norm = torch.sqrt(r[:,0]*r[:,0] + r[:,1]*r[:,1] + r[:,2]*r[:,2] + r[:,3]*r[:,3]) q = r / norm[:, None] R = torch.zeros((q.size(0), 3, 3), device='cuda') r = q[:, 0] x = q[:, 1] y = q[:, 2] z = q[:, 3] R[:, 0, 0] = 1 - 2 * (y*y + z*z) R[:, 0, 1] = 2 * (x*y - r*z) R[:, 0, 2] = 2 * (x*z + r*y) R[:, 1, 0] = 2 * (x*y + r*z) R[:, 1, 1] = 1 - 2 * (x*x + z*z) R[:, 1, 2] = 2 * (y*z - r*x) R[:, 2, 0] = 2 * (x*z - r*y) R[:, 2, 1] = 2 * (y*z + r*x) R[:, 2, 2] = 1 - 2 * (x*x + y*y) return R def build_scaling_rotation(s, r): """ 构建3D高斯模型的尺度-旋转矩阵 s: 尺度参数 r: 旋转参数 return: 尺度-旋转矩阵 """ L = torch.zeros((s.shape[0], 3, 3), dtype=torch.float, device="cuda") # 初始化尺度矩阵 R = build_rotation(r) # 四元数 -> 旋转矩阵 # 设置尺度矩阵的对角线元素 L[:,0,0] = s[:,0] L[:,1,1] = s[:,1] L[:,2,2] = s[:,2] L = R @ L # 应用旋转 return L def safe_state(silent): old_f = sys.stdout class F: def __init__(self, silent): self.silent = silent def write(self, x): if not self.silent: if x.endswith("\n"): old_f.write(x.replace("\n", " [{}]\n".format(str(datetime.now().strftime("%d/%m %H:%M:%S"))))) else: old_f.write(x) def flush(self): old_f.flush() # 若args.quiet 为 True,不写入任何文本到标准输出管道 sys.stdout = F(silent) # 设置随机种子,使得结果可复现 random.seed(0) np.random.seed(0) torch.manual_seed(0) torch.cuda.set_device(torch.device("cuda:0")) # torch 默认的 CUDA 设备为 cuda:0