# # Copyright (C) 2023, Inria # GRAPHDECO research group, https://team.inria.fr/graphdeco # All rights reserved. # # This software is free for non-commercial, research and evaluation use # under the terms of the LICENSE.md file. # # For inquiries contact george.drettakis@inria.fr # import torch from torch import nn import numpy as np from utils.graphics_utils import getWorld2View2, getProjectionMatrix class Camera(nn.Module): def __init__(self, colmap_id, R, T, FoVx, FoVy, image, gt_alpha_mask, image_name, uid, trans=np.array([0.0, 0.0, 0.0]), scale=1.0, data_device = "cuda", data_dtype=torch.float32, store_images_as_uint8=True, ): super(Camera, self).__init__() self.uid = uid self.colmap_id = colmap_id self.R = R self.T = T self.FoVx = FoVx self.FoVy = FoVy self.image_name = image_name self.data_dtype = data_dtype try: self.data_device = torch.device(data_device) except Exception as e: print(e) print(f"[Warning] Custom device {data_device} failed, fallback to default cuda device" ) self.data_device = torch.device("cuda") self.store_images_as_uint8 = store_images_as_uint8 self._original_image = image.to(self.data_device) self._gt_alpha_mask = gt_alpha_mask if self._gt_alpha_mask is not None: self._gt_alpha_mask = self._gt_alpha_mask.to(self.data_device) if not store_images_as_uint8: self._original_image = self.convert_image(self._original_image) self.image_width = self._original_image.shape[2] self.image_height = self._original_image.shape[1] self.zfar = 100.0 self.znear = 0.01 self.trans = trans self.scale = scale self.world_view_transform = torch.tensor(getWorld2View2(R, T, trans, scale)).transpose(0, 1).cuda() self.projection_matrix = getProjectionMatrix(znear=self.znear, zfar=self.zfar, fovX=self.FoVx, fovY=self.FoVy).transpose(0,1).cuda() self.full_proj_transform = (self.world_view_transform.unsqueeze(0).bmm(self.projection_matrix.unsqueeze(0))).squeeze(0) self.camera_center = self.world_view_transform.inverse()[3, :3] def convert_image(self, image): image = (image / 255.0).clamp(0.0, 1.0).to(self.data_dtype) gt_alpha_mask = self._gt_alpha_mask if gt_alpha_mask is not None: gt_alpha_mask = gt_alpha_mask / 255.0 image *= gt_alpha_mask.to(self.data_dtype) return image @property def original_image(self): if self.store_images_as_uint8: return self.convert_image(self._original_image) else: return self._original_image class MiniCam: def __init__(self, width, height, fovy, fovx, znear, zfar, world_view_transform, full_proj_transform): self.image_width = width self.image_height = height self.FoVy = fovy self.FoVx = fovx self.znear = znear self.zfar = zfar self.world_view_transform = world_view_transform self.full_proj_transform = full_proj_transform view_inv = torch.inverse(self.world_view_transform) self.camera_center = view_inv[3][:3]