# # Copyright (C) 2023, Inria # GRAPHDECO research group, https://team.inria.fr/graphdeco # All rights reserved. # # This software is free for non-commercial, research and evaluation use # under the terms of the LICENSE.md file. # # For inquiries contact george.drettakis@inria.fr # # xvdp removed magick, even single threaded PIL resizes 4X faster import os import logging from argparse import ArgumentParser import shutil from PIL import Image # This Python script is based on the shell converter script provided in the MipNerF 360 repository. parser = ArgumentParser("Colmap converter") parser.add_argument("--no_gpu", action='store_true') parser.add_argument("--skip_matching", action='store_true') parser.add_argument("--source_path", "-s", required=True, type=str) parser.add_argument("--camera", default="OPENCV", type=str) parser.add_argument("--colmap_executable", default="", type=str) parser.add_argument("--resize", action="store_true") parser.add_argument("--magick_executable", default="", type=str) args = parser.parse_args() colmap_command = '"{}"'.format(args.colmap_executable) if len(args.colmap_executable) > 0 else "colmap" use_gpu = 1 if not args.no_gpu else 0 if not args.skip_matching: os.makedirs(args.source_path + "/distorted/sparse", exist_ok=True) ## Feature extraction feat_extracton_cmd = colmap_command + " feature_extractor "\ "--database_path " + args.source_path + "/distorted/database.db \ --image_path " + args.source_path + "/input \ --ImageReader.single_camera 1 \ --ImageReader.camera_model " + args.camera + " \ --SiftExtraction.use_gpu " + str(use_gpu) exit_code = os.system(feat_extracton_cmd) if exit_code != 0: logging.error(f"Feature extraction failed with code {exit_code}. Exiting.") exit(exit_code) ## Feature matching feat_matching_cmd = colmap_command + " exhaustive_matcher \ --database_path " + args.source_path + "/distorted/database.db \ --SiftMatching.use_gpu " + str(use_gpu) exit_code = os.system(feat_matching_cmd) if exit_code != 0: logging.error(f"Feature matching failed with code {exit_code}. Exiting.") exit(exit_code) ### Bundle adjustment # The default Mapper tolerance is unnecessarily large, # decreasing it speeds up bundle adjustment steps. mapper_cmd = (colmap_command + " mapper \ --database_path " + args.source_path + "/distorted/database.db \ --image_path " + args.source_path + "/input \ --output_path " + args.source_path + "/distorted/sparse \ --Mapper.ba_global_function_tolerance=0.000001") exit_code = os.system(mapper_cmd) if exit_code != 0: logging.error(f"Mapper failed with code {exit_code}. Exiting.") exit(exit_code) ### Image undistortion ## We need to undistort our images into ideal pinhole intrinsics. img_undist_cmd = (colmap_command + " image_undistorter \ --image_path " + args.source_path + "/input \ --input_path " + args.source_path + "/distorted/sparse/0 \ --output_path " + args.source_path + "\ --output_type COLMAP") exit_code = os.system(img_undist_cmd) if exit_code != 0: logging.error(f"Mapper failed with code {exit_code}. Exiting.") exit(exit_code) files = os.listdir(args.source_path + "/sparse") os.makedirs(args.source_path + "/sparse/0", exist_ok=True) # Copy each file from the source directory to the destination directory for file in files: if file == '0': continue source_file = os.path.join(args.source_path, "sparse", file) destination_file = os.path.join(args.source_path, "sparse", "0", file) shutil.move(source_file, destination_file) if args.resize: print("Copying and resizing...") # Resize images. for div in [2,4,8]: os.makedirs(args.source_path + f"/images_{div}", exist_ok=True) # Get the list of files in the source directory files = os.listdir(args.source_path + "/images") # Copy each file from the source directory to the destination directory for j, file in enumerate(files): source_file = os.path.join(args.source_path, "images", file) im = Image.open(source_file) logging.info(f"processing image [{j}/{len(files)}] {source_file}") for div in [2,4,8]: destination_file = os.path.join(args.source_path, f"images_{div}", file) im.resize([round(i/div) for i in im.size], Image.BICUBIC).save(destination_file, quality=100) print("Done.")