import numpy as np import argparse import cv2 from joblib import delayed, Parallel import json from read_write_model import * def get_scales(key, cameras, images, points3d_ordered, args): image_meta = images[key] cam_intrinsic = cameras[image_meta.camera_id] pts_idx = images_metas[key].point3D_ids mask = pts_idx >= 0 mask *= pts_idx < len(points3d_ordered) pts_idx = pts_idx[mask] valid_xys = image_meta.xys[mask] if len(pts_idx) > 0: pts = points3d_ordered[pts_idx] else: pts = np.array([0, 0, 0]) R = qvec2rotmat(image_meta.qvec) pts = np.dot(pts, R.T) + image_meta.tvec invcolmapdepth = 1. / pts[..., 2] n_remove = len(image_meta.name.split('.')[-1]) + 1 invmonodepthmap = cv2.imread(f"{args.depths_dir}/{image_meta.name[:-n_remove]}.png", cv2.IMREAD_UNCHANGED) if invmonodepthmap is None: return None if invmonodepthmap.ndim != 2: invmonodepthmap = invmonodepthmap[..., 0] invmonodepthmap = invmonodepthmap.astype(np.float32) / (2**16) s = invmonodepthmap.shape[0] / cam_intrinsic.height maps = (valid_xys * s).astype(np.float32) valid = ( (maps[..., 0] >= 0) * (maps[..., 1] >= 0) * (maps[..., 0] < cam_intrinsic.width * s) * (maps[..., 1] < cam_intrinsic.height * s) * (invcolmapdepth > 0)) if valid.sum() > 10 and (invcolmapdepth.max() - invcolmapdepth.min()) > 1e-3: maps = maps[valid, :] invcolmapdepth = invcolmapdepth[valid] invmonodepth = cv2.remap(invmonodepthmap, maps[..., 0], maps[..., 1], interpolation=cv2.INTER_LINEAR, borderMode=cv2.BORDER_REPLICATE)[..., 0] ## Median / dev t_colmap = np.median(invcolmapdepth) s_colmap = np.mean(np.abs(invcolmapdepth - t_colmap)) t_mono = np.median(invmonodepth) s_mono = np.mean(np.abs(invmonodepth - t_mono)) scale = s_colmap / s_mono offset = t_colmap - t_mono * scale else: scale = 0 offset = 0 return {"image_name": image_meta.name[:-n_remove], "scale": scale, "offset": offset} if __name__ == '__main__': parser = argparse.ArgumentParser() parser.add_argument('--base_dir', default="../data/big_gaussians/standalone_chunks/campus") parser.add_argument('--depths_dir', default="../data/big_gaussians/standalone_chunks/campus/depths_any") parser.add_argument('--model_type', default="bin") args = parser.parse_args() cam_intrinsics, images_metas, points3d = read_model(os.path.join(args.base_dir, "sparse", "0"), ext=f".{args.model_type}") pts_indices = np.array([points3d[key].id for key in points3d]) pts_xyzs = np.array([points3d[key].xyz for key in points3d]) points3d_ordered = np.zeros([pts_indices.max()+1, 3]) points3d_ordered[pts_indices] = pts_xyzs # depth_param_list = [get_scales(key, cam_intrinsics, images_metas, points3d_ordered, args) for key in images_metas] depth_param_list = Parallel(n_jobs=-1, backend="threading")( delayed(get_scales)(key, cam_intrinsics, images_metas, points3d_ordered, args) for key in images_metas ) depth_params = { depth_param["image_name"]: {"scale": depth_param["scale"], "offset": depth_param["offset"]} for depth_param in depth_param_list if depth_param != None } with open(f"{args.base_dir}/sparse/0/depth_params.json", "w") as f: json.dump(depth_params, f, indent=2) print(0)