# # Copyright (C) 2023, Inria # GRAPHDECO research group, https://team.inria.fr/graphdeco # All rights reserved. # # This software is free for non-commercial, research and evaluation use # under the terms of the LICENSE.md file. # # For inquiries contact george.drettakis@inria.fr # from scene.cameras import Camera import numpy as np from utils.graphics_utils import fov2focal from PIL import Image import cv2 WARNED = False def loadCam(args, id, cam_info, resolution_scale, is_nerf_synthetic, is_test_dataset): image = Image.open(cam_info.image_path) if cam_info.depth_path != "": try: if is_nerf_synthetic: invdepthmap = cv2.imread(cam_info.depth_path, -1).astype(np.float32) / 512 else: invdepthmap = cv2.imread(cam_info.depth_path, -1).astype(np.float32) / float(2**16) except FileNotFoundError: print(f"Error: The depth file at path '{cam_info.depth_path}' was not found.") raise except IOError: print(f"Error: Unable to open the image file '{cam_info.depth_path}'. It may be corrupted or an unsupported format.") raise except Exception as e: print(f"An unexpected error occurred when trying to read depth at {cam_info.depth_path}: {e}") raise else: invdepthmap = None orig_w, orig_h = image.size if args.resolution in [1, 2, 4, 8]: resolution = round(orig_w/(resolution_scale * args.resolution)), round(orig_h/(resolution_scale * args.resolution)) else: # should be a type that converts to float if args.resolution == -1: if orig_w > 1600: global WARNED if not WARNED: print("[ INFO ] Encountered quite large input images (>1.6K pixels width), rescaling to 1.6K.\n " "If this is not desired, please explicitly specify '--resolution/-r' as 1") WARNED = True global_down = orig_w / 1600 else: global_down = 1 else: global_down = orig_w / args.resolution scale = float(global_down) * float(resolution_scale) resolution = (int(orig_w / scale), int(orig_h / scale)) return Camera(resolution, colmap_id=cam_info.uid, R=cam_info.R, T=cam_info.T, FoVx=cam_info.FovX, FoVy=cam_info.FovY, depth_params=cam_info.depth_params, image=image, invdepthmap=invdepthmap, image_name=cam_info.image_name, uid=id, data_device=args.data_device, train_test_exp=args.train_test_exp, is_test_dataset=is_test_dataset, is_test_view=cam_info.is_test) def cameraList_from_camInfos(cam_infos, resolution_scale, args, is_nerf_synthetic, is_test_dataset): camera_list = [] for id, c in enumerate(cam_infos): camera_list.append(loadCam(args, id, c, resolution_scale, is_nerf_synthetic, is_test_dataset)) return camera_list def camera_to_JSON(id, camera : Camera): Rt = np.zeros((4, 4)) Rt[:3, :3] = camera.R.transpose() Rt[:3, 3] = camera.T Rt[3, 3] = 1.0 W2C = np.linalg.inv(Rt) pos = W2C[:3, 3] rot = W2C[:3, :3] serializable_array_2d = [x.tolist() for x in rot] camera_entry = { 'id' : id, 'img_name' : camera.image_name, 'width' : camera.width, 'height' : camera.height, 'position': pos.tolist(), 'rotation': serializable_array_2d, 'fy' : fov2focal(camera.FovY, camera.height), 'fx' : fov2focal(camera.FovX, camera.width) } return camera_entry