mirror of
https://github.com/graphdeco-inria/gaussian-splatting
synced 2025-04-02 20:30:40 +00:00
calculate loss one by one image for saving gpu memory
This commit is contained in:
parent
9e82ac7170
commit
da44a55c40
9
train.py
9
train.py
@ -111,7 +111,14 @@ def training(dataset, opt, pipe, testing_iterations, saving_iterations, checkpoi
|
||||
render_pkg = render(viewpoint_cam, gaussians, pipe, bg, return_depth=True, return_normal=True)
|
||||
image, viewspace_point_tensor, visibility_filter, radii = render_pkg["render"], render_pkg["viewspace_points"], render_pkg["visibility_filter"], render_pkg["radii"]
|
||||
|
||||
# Loss
|
||||
# Loss,计算渲染图像与真实图像之间的损失
|
||||
|
||||
# 替换为一张一张读取
|
||||
# gt_image_path = viewpoint_cam.image_path
|
||||
# gt_image = Image.open(gt_image_path)
|
||||
# gt_image = (torch.from_numpy(np.array(gt_image)) / 255.0).permute(2, 0, 1)
|
||||
# gt_image = gt_image.clamp(0.0, 1.0).to(viewpoint_cam.data_device)
|
||||
|
||||
gt_image = viewpoint_cam.original_image.cuda()
|
||||
Ll1 = l1_loss(image, gt_image)
|
||||
loss = (1.0 - opt.lambda_dssim) * Ll1 + opt.lambda_dssim * (1.0 - ssim(image, gt_image))
|
||||
|
Loading…
Reference in New Issue
Block a user