mirror of
https://github.com/graphdeco-inria/gaussian-splatting
synced 2025-04-02 20:30:40 +00:00
Update train.py
Updated the main function, call the create_window() function for just once, since the window_size is fixed to 11 and the channel is fixed to 3 according to the source code.
This commit is contained in:
parent
3a3220c1fe
commit
c7ea596c57
52
train.py
52
train.py
@ -11,8 +11,9 @@
|
||||
|
||||
import os
|
||||
import torch
|
||||
import time
|
||||
from random import randint
|
||||
from utils.loss_utils import l1_loss, ssim
|
||||
from utils.loss_utils import l1_loss, ssim, ssim_optimized, create_window
|
||||
from gaussian_renderer import render, network_gui
|
||||
import sys
|
||||
from scene import Scene, GaussianModel
|
||||
@ -29,27 +30,28 @@ except ImportError:
|
||||
TENSORBOARD_FOUND = False
|
||||
|
||||
def training(dataset, opt, pipe, testing_iterations, saving_iterations, checkpoint_iterations, checkpoint, debug_from):
|
||||
start_time=time.time()
|
||||
first_iter = 0
|
||||
tb_writer = prepare_output_and_logger(dataset)
|
||||
gaussians = GaussianModel(dataset.sh_degree)
|
||||
scene = Scene(dataset, gaussians)
|
||||
gaussians.training_setup(opt)
|
||||
tb_writer = prepare_output_and_logger(dataset) # Tensorboard writer
|
||||
gaussians = GaussianModel(dataset.sh_degree) #高斯模型
|
||||
scene = Scene(dataset, gaussians) #场景
|
||||
gaussians.training_setup(opt) #训练设置
|
||||
if checkpoint:
|
||||
(model_params, first_iter) = torch.load(checkpoint)
|
||||
gaussians.restore(model_params, opt)
|
||||
|
||||
bg_color = [1, 1, 1] if dataset.white_background else [0, 0, 0]
|
||||
background = torch.tensor(bg_color, dtype=torch.float32, device="cuda")
|
||||
bg_color = [1, 1, 1] if dataset.white_background else [0, 0, 0] #背景颜色
|
||||
background = torch.tensor(bg_color, dtype=torch.float32, device="cuda") #背景颜色
|
||||
|
||||
iter_start = torch.cuda.Event(enable_timing = True)
|
||||
iter_end = torch.cuda.Event(enable_timing = True)
|
||||
iter_start = torch.cuda.Event(enable_timing = True) #开始时间
|
||||
iter_end = torch.cuda.Event(enable_timing = True) #结束时间
|
||||
|
||||
viewpoint_stack = None
|
||||
ema_loss_for_log = 0.0
|
||||
progress_bar = tqdm(range(first_iter, opt.iterations), desc="Training progress")
|
||||
first_iter += 1
|
||||
for iteration in range(first_iter, opt.iterations + 1):
|
||||
if network_gui.conn == None:
|
||||
if network_gui.conn == None:
|
||||
network_gui.try_connect()
|
||||
while network_gui.conn != None:
|
||||
try:
|
||||
@ -64,9 +66,9 @@ def training(dataset, opt, pipe, testing_iterations, saving_iterations, checkpoi
|
||||
except Exception as e:
|
||||
network_gui.conn = None
|
||||
|
||||
iter_start.record()
|
||||
iter_start.record() #记录开始时间
|
||||
|
||||
gaussians.update_learning_rate(iteration)
|
||||
gaussians.update_learning_rate(iteration) #更新学习率
|
||||
|
||||
# Every 1000 its we increase the levels of SH up to a maximum degree
|
||||
if iteration % 1000 == 0:
|
||||
@ -83,14 +85,22 @@ def training(dataset, opt, pipe, testing_iterations, saving_iterations, checkpoi
|
||||
|
||||
bg = torch.rand((3), device="cuda") if opt.random_background else background
|
||||
|
||||
render_pkg = render(viewpoint_cam, gaussians, pipe, bg)
|
||||
render_pkg = render(viewpoint_cam, gaussians, pipe, bg) #渲染
|
||||
image, viewspace_point_tensor, visibility_filter, radii = render_pkg["render"], render_pkg["viewspace_points"], render_pkg["visibility_filter"], render_pkg["radii"]
|
||||
|
||||
|
||||
# Loss
|
||||
# gt_image = viewpoint_cam.original_image.cuda()
|
||||
# Ll1 = l1_loss(image, gt_image)
|
||||
# loss = (1.0 - opt.lambda_dssim) * Ll1 + opt.lambda_dssim * (1.0 - ssim(image, gt_image))
|
||||
# loss.backward()
|
||||
|
||||
|
||||
# ----------------modify-------------
|
||||
gt_image = viewpoint_cam.original_image.cuda()
|
||||
Ll1 = l1_loss(image, gt_image)
|
||||
loss = (1.0 - opt.lambda_dssim) * Ll1 + opt.lambda_dssim * (1.0 - ssim(image, gt_image))
|
||||
loss = (1.0 - opt.lambda_dssim) * Ll1 + opt.lambda_dssim * (1.0 - ssim_optimized(image, gt_image, window=window))
|
||||
loss.backward()
|
||||
#-------------------------------------
|
||||
|
||||
iter_end.record()
|
||||
|
||||
@ -131,13 +141,18 @@ def training(dataset, opt, pipe, testing_iterations, saving_iterations, checkpoi
|
||||
print("\n[ITER {}] Saving Checkpoint".format(iteration))
|
||||
torch.save((gaussians.capture(), iteration), scene.model_path + "/chkpnt" + str(iteration) + ".pth")
|
||||
|
||||
end_time = time.time() # 记录训练结束时间
|
||||
total_time = end_time - start_time # 计算总时间
|
||||
print(f"\nTraining complete. Total training time: {total_time:.2f} seconds.") # 打印总时间
|
||||
|
||||
|
||||
def prepare_output_and_logger(args):
|
||||
if not args.model_path:
|
||||
if os.getenv('OAR_JOB_ID'):
|
||||
unique_str=os.getenv('OAR_JOB_ID')
|
||||
else:
|
||||
unique_str = str(uuid.uuid4())
|
||||
args.model_path = os.path.join("./output/", unique_str[0:10])
|
||||
args.model_path = os.path.join("/mnt/data1/3dgs_modify_output/", unique_str[0:10])
|
||||
|
||||
# Set up output folder
|
||||
print("Output folder: {}".format(args.model_path))
|
||||
@ -191,6 +206,11 @@ def training_report(tb_writer, iteration, Ll1, loss, l1_loss, elapsed, testing_i
|
||||
torch.cuda.empty_cache()
|
||||
|
||||
if __name__ == "__main__":
|
||||
#----------------------create window------------------
|
||||
window_size=11
|
||||
channel=3
|
||||
window=create_window(window_size, channel)
|
||||
#--------------------------------
|
||||
# Set up command line argument parser
|
||||
parser = ArgumentParser(description="Training script parameters")
|
||||
lp = ModelParams(parser)
|
||||
|
Loading…
Reference in New Issue
Block a user