mirror of
https://github.com/graphdeco-inria/gaussian-splatting
synced 2025-04-07 14:34:09 +00:00
Merge a050ffceb0
into 8a70a8cd6f
This commit is contained in:
commit
bf4c20b32b
@ -9,7 +9,7 @@ dependencies:
|
||||
- python=3.7.13
|
||||
- pip=22.3.1
|
||||
- pytorch=1.12.1
|
||||
- torchaudio=0.12.1
|
||||
- torchmetrics
|
||||
- torchvision=0.13.1
|
||||
- tqdm
|
||||
- pip:
|
||||
|
@ -1,21 +0,0 @@
|
||||
import torch
|
||||
|
||||
from .modules.lpips import LPIPS
|
||||
|
||||
|
||||
def lpips(x: torch.Tensor,
|
||||
y: torch.Tensor,
|
||||
net_type: str = 'alex',
|
||||
version: str = '0.1'):
|
||||
r"""Function that measures
|
||||
Learned Perceptual Image Patch Similarity (LPIPS).
|
||||
|
||||
Arguments:
|
||||
x, y (torch.Tensor): the input tensors to compare.
|
||||
net_type (str): the network type to compare the features:
|
||||
'alex' | 'squeeze' | 'vgg'. Default: 'alex'.
|
||||
version (str): the version of LPIPS. Default: 0.1.
|
||||
"""
|
||||
device = x.device
|
||||
criterion = LPIPS(net_type, version).to(device)
|
||||
return criterion(x, y)
|
@ -1,36 +0,0 @@
|
||||
import torch
|
||||
import torch.nn as nn
|
||||
|
||||
from .networks import get_network, LinLayers
|
||||
from .utils import get_state_dict
|
||||
|
||||
|
||||
class LPIPS(nn.Module):
|
||||
r"""Creates a criterion that measures
|
||||
Learned Perceptual Image Patch Similarity (LPIPS).
|
||||
|
||||
Arguments:
|
||||
net_type (str): the network type to compare the features:
|
||||
'alex' | 'squeeze' | 'vgg'. Default: 'alex'.
|
||||
version (str): the version of LPIPS. Default: 0.1.
|
||||
"""
|
||||
def __init__(self, net_type: str = 'alex', version: str = '0.1'):
|
||||
|
||||
assert version in ['0.1'], 'v0.1 is only supported now'
|
||||
|
||||
super(LPIPS, self).__init__()
|
||||
|
||||
# pretrained network
|
||||
self.net = get_network(net_type)
|
||||
|
||||
# linear layers
|
||||
self.lin = LinLayers(self.net.n_channels_list)
|
||||
self.lin.load_state_dict(get_state_dict(net_type, version))
|
||||
|
||||
def forward(self, x: torch.Tensor, y: torch.Tensor):
|
||||
feat_x, feat_y = self.net(x), self.net(y)
|
||||
|
||||
diff = [(fx - fy) ** 2 for fx, fy in zip(feat_x, feat_y)]
|
||||
res = [l(d).mean((2, 3), True) for d, l in zip(diff, self.lin)]
|
||||
|
||||
return torch.sum(torch.cat(res, 0), 0, True)
|
@ -1,96 +0,0 @@
|
||||
from typing import Sequence
|
||||
|
||||
from itertools import chain
|
||||
|
||||
import torch
|
||||
import torch.nn as nn
|
||||
from torchvision import models
|
||||
|
||||
from .utils import normalize_activation
|
||||
|
||||
|
||||
def get_network(net_type: str):
|
||||
if net_type == 'alex':
|
||||
return AlexNet()
|
||||
elif net_type == 'squeeze':
|
||||
return SqueezeNet()
|
||||
elif net_type == 'vgg':
|
||||
return VGG16()
|
||||
else:
|
||||
raise NotImplementedError('choose net_type from [alex, squeeze, vgg].')
|
||||
|
||||
|
||||
class LinLayers(nn.ModuleList):
|
||||
def __init__(self, n_channels_list: Sequence[int]):
|
||||
super(LinLayers, self).__init__([
|
||||
nn.Sequential(
|
||||
nn.Identity(),
|
||||
nn.Conv2d(nc, 1, 1, 1, 0, bias=False)
|
||||
) for nc in n_channels_list
|
||||
])
|
||||
|
||||
for param in self.parameters():
|
||||
param.requires_grad = False
|
||||
|
||||
|
||||
class BaseNet(nn.Module):
|
||||
def __init__(self):
|
||||
super(BaseNet, self).__init__()
|
||||
|
||||
# register buffer
|
||||
self.register_buffer(
|
||||
'mean', torch.Tensor([-.030, -.088, -.188])[None, :, None, None])
|
||||
self.register_buffer(
|
||||
'std', torch.Tensor([.458, .448, .450])[None, :, None, None])
|
||||
|
||||
def set_requires_grad(self, state: bool):
|
||||
for param in chain(self.parameters(), self.buffers()):
|
||||
param.requires_grad = state
|
||||
|
||||
def z_score(self, x: torch.Tensor):
|
||||
return (x - self.mean) / self.std
|
||||
|
||||
def forward(self, x: torch.Tensor):
|
||||
x = self.z_score(x)
|
||||
|
||||
output = []
|
||||
for i, (_, layer) in enumerate(self.layers._modules.items(), 1):
|
||||
x = layer(x)
|
||||
if i in self.target_layers:
|
||||
output.append(normalize_activation(x))
|
||||
if len(output) == len(self.target_layers):
|
||||
break
|
||||
return output
|
||||
|
||||
|
||||
class SqueezeNet(BaseNet):
|
||||
def __init__(self):
|
||||
super(SqueezeNet, self).__init__()
|
||||
|
||||
self.layers = models.squeezenet1_1(True).features
|
||||
self.target_layers = [2, 5, 8, 10, 11, 12, 13]
|
||||
self.n_channels_list = [64, 128, 256, 384, 384, 512, 512]
|
||||
|
||||
self.set_requires_grad(False)
|
||||
|
||||
|
||||
class AlexNet(BaseNet):
|
||||
def __init__(self):
|
||||
super(AlexNet, self).__init__()
|
||||
|
||||
self.layers = models.alexnet(True).features
|
||||
self.target_layers = [2, 5, 8, 10, 12]
|
||||
self.n_channels_list = [64, 192, 384, 256, 256]
|
||||
|
||||
self.set_requires_grad(False)
|
||||
|
||||
|
||||
class VGG16(BaseNet):
|
||||
def __init__(self):
|
||||
super(VGG16, self).__init__()
|
||||
|
||||
self.layers = models.vgg16(weights=models.VGG16_Weights.IMAGENET1K_V1).features
|
||||
self.target_layers = [4, 9, 16, 23, 30]
|
||||
self.n_channels_list = [64, 128, 256, 512, 512]
|
||||
|
||||
self.set_requires_grad(False)
|
@ -1,30 +0,0 @@
|
||||
from collections import OrderedDict
|
||||
|
||||
import torch
|
||||
|
||||
|
||||
def normalize_activation(x, eps=1e-10):
|
||||
norm_factor = torch.sqrt(torch.sum(x ** 2, dim=1, keepdim=True))
|
||||
return x / (norm_factor + eps)
|
||||
|
||||
|
||||
def get_state_dict(net_type: str = 'alex', version: str = '0.1'):
|
||||
# build url
|
||||
url = 'https://raw.githubusercontent.com/richzhang/PerceptualSimilarity/' \
|
||||
+ f'master/lpips/weights/v{version}/{net_type}.pth'
|
||||
|
||||
# download
|
||||
old_state_dict = torch.hub.load_state_dict_from_url(
|
||||
url, progress=True,
|
||||
map_location=None if torch.cuda.is_available() else torch.device('cpu')
|
||||
)
|
||||
|
||||
# rename keys
|
||||
new_state_dict = OrderedDict()
|
||||
for key, val in old_state_dict.items():
|
||||
new_key = key
|
||||
new_key = new_key.replace('lin', '')
|
||||
new_key = new_key.replace('model.', '')
|
||||
new_state_dict[new_key] = val
|
||||
|
||||
return new_state_dict
|
@ -15,12 +15,14 @@ from PIL import Image
|
||||
import torch
|
||||
import torchvision.transforms.functional as tf
|
||||
from utils.loss_utils import ssim
|
||||
from lpipsPyTorch import lpips
|
||||
from torchmetrics.image.lpip import LearnedPerceptualImagePatchSimilarity
|
||||
import json
|
||||
from tqdm import tqdm
|
||||
from utils.image_utils import psnr
|
||||
from argparse import ArgumentParser
|
||||
|
||||
lpips = LearnedPerceptualImagePatchSimilarity(net_type='vgg').cuda()
|
||||
|
||||
def readImages(renders_dir, gt_dir):
|
||||
renders = []
|
||||
gts = []
|
||||
@ -71,7 +73,7 @@ def evaluate(model_paths):
|
||||
for idx in tqdm(range(len(renders)), desc="Metric evaluation progress"):
|
||||
ssims.append(ssim(renders[idx], gts[idx]))
|
||||
psnrs.append(psnr(renders[idx], gts[idx]))
|
||||
lpipss.append(lpips(renders[idx], gts[idx], net_type='vgg'))
|
||||
lpipss.append(lpips(renders[idx], gts[idx]))
|
||||
|
||||
print(" SSIM : {:>12.7f}".format(torch.tensor(ssims).mean(), ".5"))
|
||||
print(" PSNR : {:>12.7f}".format(torch.tensor(psnrs).mean(), ".5"))
|
||||
|
Loading…
Reference in New Issue
Block a user