From bc8b8bfcb16b566e324cad6845e58ab47a473ef9 Mon Sep 17 00:00:00 2001 From: bkerbl Date: Mon, 10 Jul 2023 18:14:40 +0200 Subject: [PATCH] Clarification --- README.md | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) diff --git a/README.md b/README.md index ea6b32c..ebbe3d2 100644 --- a/README.md +++ b/README.md @@ -3,7 +3,7 @@ Bernhard Kerbl*, Georgios Kopanas*, Thomas Leimkühler, George Drettakis (* indi | [Webpage](https://repo-sam.inria.fr/fungraph/3d-gaussian-splatting/) | [Full Paper](https://repo-sam.inria.fr/fungraph/3d-gaussian-splatting/3d_gaussian_splatting_high.pdf) | [Video](https://youtu.be/T_kXY43VZnk) | [Other GRAPHDECO Publications](http://www-sop.inria.fr/reves/publis/gdindex.php) | [FUNGRAPH project page](https://fungraph.inria.fr) | -| [T&T+DB Datasets (650MB)](https://repo-sam.inria.fr/fungraph/3d-gaussian-splatting/datasets/input/tandt_db.zip) | [Pre-trained Models (14 GB)](https://repo-sam.inria.fr/fungraph/3d-gaussian-splatting/datasets/pretrained/models.zip) | [Viewers for Windows (60MB)](https://repo-sam.inria.fr/fungraph/3d-gaussian-splatting/binaries/viewers.zip) | [Evaluation Images (7 GB)](https://repo-sam.inria.fr/fungraph/3d-gaussian-splatting/evaluation/images.zip) |
+| [T&T+DB COLMAP (650MB)](https://repo-sam.inria.fr/fungraph/3d-gaussian-splatting/datasets/input/tandt_db.zip) | [Pre-trained Models (14 GB)](https://repo-sam.inria.fr/fungraph/3d-gaussian-splatting/datasets/pretrained/models.zip) | [Viewers for Windows (60MB)](https://repo-sam.inria.fr/fungraph/3d-gaussian-splatting/binaries/viewers.zip) | [Evaluation Images (7 GB)](https://repo-sam.inria.fr/fungraph/3d-gaussian-splatting/evaluation/images.zip) |
![Teaser image](assets/teaser.png) This repository contains the official authors implementation associated with the paper "3D Gaussian Splatting for Real-Time Radiance Field Rendering", which can be found [here](https://repo-sam.inria.fr/fungraph/3d-gaussian-splatting/). We further provide the reference images used to create the error metrics reported in the paper, as well as recently created, pre-trained models.