mirror of
https://github.com/graphdeco-inria/gaussian-splatting
synced 2024-11-21 15:57:45 +00:00
Update
This commit is contained in:
parent
424012cd0d
commit
8943f57b26
@ -3,7 +3,7 @@ Bernhard Kerbl*, Georgios Kopanas*, Thomas Leimkühler, George Drettakis (* indi
|
||||
| [Webpage](https://repo-sam.inria.fr/fungraph/3d-gaussian-splatting/) | [Full Paper](https://repo-sam.inria.fr/fungraph/3d-gaussian-splatting/3d_gaussian_splatting_high.pdf) |
|
||||
[Video](https://youtu.be/T_kXY43VZnk) | [Other GRAPHDECO Publications](http://www-sop.inria.fr/reves/publis/gdindex.php) | [FUNGRAPH project page](https://fungraph.inria.fr)
|
||||
|
||||
[T&T+DB Datasets (650MB)](https://repo-sam.inria.fr/fungraph/3d-gaussian-splatting/datasets/input/tandt_db.zip) | [Pre-trained Models (14 GB)](https://repo-sam.inria.fr/fungraph/3d-gaussian-splatting/datasets/pretrained/models.zip) | [Viewer Binaries for Windows (60MB)](https://repo-sam.inria.fr/fungraph/3d-gaussian-splatting/binaries/viewers.zip) | [Evaluation Images](https://repo-sam.inria.fr/fungraph/3d-gaussian-splatting/evaluation/images.zip) | <br>
|
||||
[T&T+DB Datasets (650MB)](https://repo-sam.inria.fr/fungraph/3d-gaussian-splatting/datasets/input/tandt_db.zip) | [Pre-trained Models (14 GB)](https://repo-sam.inria.fr/fungraph/3d-gaussian-splatting/datasets/pretrained/models.zip) | [Viewer Binaries for Windows (60MB)](https://repo-sam.inria.fr/fungraph/3d-gaussian-splatting/binaries/viewers.zip) | [Evaluation Images (7 GB)](https://repo-sam.inria.fr/fungraph/3d-gaussian-splatting/evaluation/images.zip) | <br>
|
||||
![Teaser image](assets/teaser.png)
|
||||
|
||||
This repository contains the code associated with the paper "3D Gaussian Splatting for Real-Time Radiance Field Rendering", which can be found [here](https://repo-sam.inria.fr/fungraph/3d-gaussian-splatting/). We further provide the reference images used to create the error metrics reported in the paper, as well as recently created, pre-trained models.
|
||||
|
12
full_eval.py
12
full_eval.py
@ -38,18 +38,18 @@ if not args.skip_training or not args.skip_rendering:
|
||||
|
||||
if not args.skip_training:
|
||||
common_args = " --quiet --eval --test_iterations -1"
|
||||
for scene in tanks_and_temples_scenes:
|
||||
source = args.tanksandtemples + "/" + scene
|
||||
os.system("python train.py -s " + source + " -m " + args.output_path + "/" + scene + common_args)
|
||||
for scene in deep_blending_scenes:
|
||||
source = args.deepblending + "/" + scene
|
||||
os.system("python train.py -s " + source + " -m " + args.output_path + "/" + scene + common_args)
|
||||
for scene in mipnerf360_outdoor_scenes:
|
||||
source = args.mipnerf360 + "/" + scene
|
||||
os.system("python train.py -s " + source + " -i images_4 -m " + args.output_path + "/" + scene + common_args)
|
||||
for scene in mipnerf360_indoor_scenes:
|
||||
source = args.mipnerf360 + "/" + scene
|
||||
os.system("python train.py -s " + source + " -i images_2 -m " + args.output_path + "/" + scene + common_args)
|
||||
for scene in tanks_and_temples_scenes:
|
||||
source = args.tanksandtemples + "/" + scene
|
||||
os.system("python train.py -s " + source + " -m " + args.output_path + "/" + scene + common_args)
|
||||
for scene in deep_blending_scenes:
|
||||
source = args.deepblending + "/" + scene
|
||||
os.system("python train.py -s " + source + " -m " + args.output_path + "/" + scene + common_args)
|
||||
|
||||
if not args.skip_rendering:
|
||||
all_sources = []
|
||||
|
Loading…
Reference in New Issue
Block a user