mirror of
https://github.com/graphdeco-inria/gaussian-splatting
synced 2024-11-25 13:26:47 +00:00
fix camera intrisics
This commit is contained in:
parent
2eee0e26d2
commit
7e3c8a7785
@ -15,7 +15,7 @@ import numpy as np
|
|||||||
from utils.graphics_utils import getWorld2View2, getProjectionMatrix
|
from utils.graphics_utils import getWorld2View2, getProjectionMatrix
|
||||||
|
|
||||||
class Camera(nn.Module):
|
class Camera(nn.Module):
|
||||||
def __init__(self, colmap_id, R, T, FoVx, FoVy, image, gt_alpha_mask,
|
def __init__(self, colmap_id, R, T, FoVx, FoVy, cx, cy, image, gt_alpha_mask,
|
||||||
image_name, uid,
|
image_name, uid,
|
||||||
trans=np.array([0.0, 0.0, 0.0]), scale=1.0, data_device = "cuda"
|
trans=np.array([0.0, 0.0, 0.0]), scale=1.0, data_device = "cuda"
|
||||||
):
|
):
|
||||||
@ -27,6 +27,8 @@ class Camera(nn.Module):
|
|||||||
self.T = T
|
self.T = T
|
||||||
self.FoVx = FoVx
|
self.FoVx = FoVx
|
||||||
self.FoVy = FoVy
|
self.FoVy = FoVy
|
||||||
|
self.cx = cx
|
||||||
|
self.cy = cy
|
||||||
self.image_name = image_name
|
self.image_name = image_name
|
||||||
|
|
||||||
try:
|
try:
|
||||||
@ -52,7 +54,9 @@ class Camera(nn.Module):
|
|||||||
self.scale = scale
|
self.scale = scale
|
||||||
|
|
||||||
self.world_view_transform = torch.tensor(getWorld2View2(R, T, trans, scale)).transpose(0, 1).cuda()
|
self.world_view_transform = torch.tensor(getWorld2View2(R, T, trans, scale)).transpose(0, 1).cuda()
|
||||||
self.projection_matrix = getProjectionMatrix(znear=self.znear, zfar=self.zfar, fovX=self.FoVx, fovY=self.FoVy).transpose(0,1).cuda()
|
self.projection_matrix = getProjectionMatrix(znear=self.znear, zfar=self.zfar,
|
||||||
|
fovX=self.FoVx, fovY=self.FoVy,
|
||||||
|
cx=self.cx, cy=self.cy).transpose(0, 1).cuda()
|
||||||
self.full_proj_transform = (self.world_view_transform.unsqueeze(0).bmm(self.projection_matrix.unsqueeze(0))).squeeze(0)
|
self.full_proj_transform = (self.world_view_transform.unsqueeze(0).bmm(self.projection_matrix.unsqueeze(0))).squeeze(0)
|
||||||
self.camera_center = self.world_view_transform.inverse()[3, :3]
|
self.camera_center = self.world_view_transform.inverse()[3, :3]
|
||||||
|
|
||||||
|
@ -29,6 +29,8 @@ class CameraInfo(NamedTuple):
|
|||||||
T: np.array
|
T: np.array
|
||||||
FovY: np.array
|
FovY: np.array
|
||||||
FovX: np.array
|
FovX: np.array
|
||||||
|
cx: np.array
|
||||||
|
cy: np.array
|
||||||
image: np.array
|
image: np.array
|
||||||
image_path: str
|
image_path: str
|
||||||
image_name: str
|
image_name: str
|
||||||
@ -84,9 +86,13 @@ def readColmapCameras(cam_extrinsics, cam_intrinsics, images_folder):
|
|||||||
|
|
||||||
if intr.model=="SIMPLE_PINHOLE":
|
if intr.model=="SIMPLE_PINHOLE":
|
||||||
focal_length_x = intr.params[0]
|
focal_length_x = intr.params[0]
|
||||||
|
cx = intr.params[1]
|
||||||
|
cy = intr.params[2]
|
||||||
FovY = focal2fov(focal_length_x, height)
|
FovY = focal2fov(focal_length_x, height)
|
||||||
FovX = focal2fov(focal_length_x, width)
|
FovX = focal2fov(focal_length_x, width)
|
||||||
elif intr.model=="PINHOLE":
|
elif intr.model=="PINHOLE":
|
||||||
|
cx = intr.params[2]
|
||||||
|
cy = intr.params[3]
|
||||||
focal_length_x = intr.params[0]
|
focal_length_x = intr.params[0]
|
||||||
focal_length_y = intr.params[1]
|
focal_length_y = intr.params[1]
|
||||||
FovY = focal2fov(focal_length_y, height)
|
FovY = focal2fov(focal_length_y, height)
|
||||||
@ -94,11 +100,14 @@ def readColmapCameras(cam_extrinsics, cam_intrinsics, images_folder):
|
|||||||
else:
|
else:
|
||||||
assert False, "Colmap camera model not handled: only undistorted datasets (PINHOLE or SIMPLE_PINHOLE cameras) supported!"
|
assert False, "Colmap camera model not handled: only undistorted datasets (PINHOLE or SIMPLE_PINHOLE cameras) supported!"
|
||||||
|
|
||||||
|
cx = (cx - width / 2) / width * 2
|
||||||
|
cy = (cy - height / 2) / height * 2
|
||||||
|
|
||||||
image_path = os.path.join(images_folder, os.path.basename(extr.name))
|
image_path = os.path.join(images_folder, os.path.basename(extr.name))
|
||||||
image_name = os.path.basename(image_path).split(".")[0]
|
image_name = os.path.basename(image_path).split(".")[0]
|
||||||
image = Image.open(image_path)
|
image = Image.open(image_path)
|
||||||
|
|
||||||
cam_info = CameraInfo(uid=uid, R=R, T=T, FovY=FovY, FovX=FovX, image=image,
|
cam_info = CameraInfo(uid=uid, R=R, T=T, FovY=FovY, FovX=FovX, cx=cx, cy=cy, image=image,
|
||||||
image_path=image_path, image_name=image_name, width=width, height=height)
|
image_path=image_path, image_name=image_name, width=width, height=height)
|
||||||
cam_infos.append(cam_info)
|
cam_infos.append(cam_info)
|
||||||
sys.stdout.write('\n')
|
sys.stdout.write('\n')
|
||||||
|
@ -47,7 +47,8 @@ def loadCam(args, id, cam_info, resolution_scale):
|
|||||||
loaded_mask = resized_image_rgb[3:4, ...]
|
loaded_mask = resized_image_rgb[3:4, ...]
|
||||||
|
|
||||||
return Camera(colmap_id=cam_info.uid, R=cam_info.R, T=cam_info.T,
|
return Camera(colmap_id=cam_info.uid, R=cam_info.R, T=cam_info.T,
|
||||||
FoVx=cam_info.FovX, FoVy=cam_info.FovY,
|
FoVx=cam_info.FovX, FoVy=cam_info.FovY,
|
||||||
|
cx=cam_info.cx, cy=cam_info.cy,
|
||||||
image=gt_image, gt_alpha_mask=loaded_mask,
|
image=gt_image, gt_alpha_mask=loaded_mask,
|
||||||
image_name=cam_info.image_name, uid=id, data_device=args.data_device)
|
image_name=cam_info.image_name, uid=id, data_device=args.data_device)
|
||||||
|
|
||||||
|
@ -48,7 +48,7 @@ def getWorld2View2(R, t, translate=np.array([.0, .0, .0]), scale=1.0):
|
|||||||
Rt = np.linalg.inv(C2W)
|
Rt = np.linalg.inv(C2W)
|
||||||
return np.float32(Rt)
|
return np.float32(Rt)
|
||||||
|
|
||||||
def getProjectionMatrix(znear, zfar, fovX, fovY):
|
def getProjectionMatrix(znear, zfar, fovX, fovY, cx, cy):
|
||||||
tanHalfFovY = math.tan((fovY / 2))
|
tanHalfFovY = math.tan((fovY / 2))
|
||||||
tanHalfFovX = math.tan((fovX / 2))
|
tanHalfFovX = math.tan((fovX / 2))
|
||||||
|
|
||||||
@ -63,8 +63,8 @@ def getProjectionMatrix(znear, zfar, fovX, fovY):
|
|||||||
|
|
||||||
P[0, 0] = 2.0 * znear / (right - left)
|
P[0, 0] = 2.0 * znear / (right - left)
|
||||||
P[1, 1] = 2.0 * znear / (top - bottom)
|
P[1, 1] = 2.0 * znear / (top - bottom)
|
||||||
P[0, 2] = (right + left) / (right - left)
|
P[0, 2] = cx
|
||||||
P[1, 2] = (top + bottom) / (top - bottom)
|
P[1, 2] = cy
|
||||||
P[3, 2] = z_sign
|
P[3, 2] = z_sign
|
||||||
P[2, 2] = z_sign * zfar / (zfar - znear)
|
P[2, 2] = z_sign * zfar / (zfar - znear)
|
||||||
P[2, 3] = -(zfar * znear) / (zfar - znear)
|
P[2, 3] = -(zfar * znear) / (zfar - znear)
|
||||||
|
Loading…
Reference in New Issue
Block a user