mirror of
https://github.com/graphdeco-inria/gaussian-splatting
synced 2024-11-22 16:28:32 +00:00
fixed learning rate for spatial
This commit is contained in:
parent
2d2d5ce1c3
commit
73ad40f414
@ -84,7 +84,7 @@ class GaussianModel:
|
|||||||
self.active_sh_degree += 1
|
self.active_sh_degree += 1
|
||||||
|
|
||||||
def create_from_pcd(self, pcd : BasicPointCloud, spatial_lr_scale : float):
|
def create_from_pcd(self, pcd : BasicPointCloud, spatial_lr_scale : float):
|
||||||
self.spatial_lr_scale = spatial_lr_scale
|
self.spatial_lr_scale = 5#spatial_lr_scale
|
||||||
fused_point_cloud = torch.tensor(np.asarray(pcd.points)).float().cuda()
|
fused_point_cloud = torch.tensor(np.asarray(pcd.points)).float().cuda()
|
||||||
fused_color = RGB2SH(torch.tensor(np.asarray(pcd.colors)).float().cuda())
|
fused_color = RGB2SH(torch.tensor(np.asarray(pcd.colors)).float().cuda())
|
||||||
features = torch.zeros((fused_color.shape[0], 3, (self.max_sh_degree + 1) ** 2)).float().cuda()
|
features = torch.zeros((fused_color.shape[0], 3, (self.max_sh_degree + 1) ** 2)).float().cuda()
|
||||||
|
Loading…
Reference in New Issue
Block a user