mirror of
https://github.com/graphdeco-inria/gaussian-splatting
synced 2024-12-01 16:54:05 +00:00
Undo spatial lr removal
This commit is contained in:
parent
b7031f116f
commit
6f1e3ec83a
@ -1 +1 @@
|
|||||||
Subproject commit 549b0c2d2c82e186cd5d705b11c53ff5e27b14e5
|
Subproject commit 29dd2f3a5dc866664b8e0f04bce34dc81e5e6088
|
@ -12,7 +12,7 @@
|
|||||||
import os
|
import os
|
||||||
from argparse import ArgumentParser
|
from argparse import ArgumentParser
|
||||||
|
|
||||||
mipnerf360_outdoor_scenes = ["flowers", "garden", "stump", "treehill"]
|
mipnerf360_outdoor_scenes = ["bicycle", "flowers", "garden", "stump", "treehill"]
|
||||||
mipnerf360_indoor_scenes = ["room", "counter", "kitchen", "bonsai"]
|
mipnerf360_indoor_scenes = ["room", "counter", "kitchen", "bonsai"]
|
||||||
tanks_and_temples_scenes = ["truck", "train"]
|
tanks_and_temples_scenes = ["truck", "train"]
|
||||||
deep_blending_scenes = ["drjohnson", "playroom"]
|
deep_blending_scenes = ["drjohnson", "playroom"]
|
||||||
@ -37,7 +37,7 @@ if not args.skip_training or not args.skip_rendering:
|
|||||||
args = parser.parse_args()
|
args = parser.parse_args()
|
||||||
|
|
||||||
if not args.skip_training:
|
if not args.skip_training:
|
||||||
common_args = " --eval --save_iterations -1"
|
common_args = " --quiet --eval --test_iterations -1"
|
||||||
for scene in mipnerf360_outdoor_scenes:
|
for scene in mipnerf360_outdoor_scenes:
|
||||||
source = args.mipnerf360 + "/" + scene
|
source = args.mipnerf360 + "/" + scene
|
||||||
os.system("python train.py -s " + source + " -i images_4 -m " + args.output_path + "/" + scene + common_args)
|
os.system("python train.py -s " + source + " -i images_4 -m " + args.output_path + "/" + scene + common_args)
|
||||||
|
@ -84,9 +84,7 @@ class GaussianModel:
|
|||||||
self.active_sh_degree += 1
|
self.active_sh_degree += 1
|
||||||
|
|
||||||
def create_from_pcd(self, pcd : BasicPointCloud, spatial_lr_scale : float):
|
def create_from_pcd(self, pcd : BasicPointCloud, spatial_lr_scale : float):
|
||||||
spatial_lr_scale = 5
|
|
||||||
self.spatial_lr_scale = spatial_lr_scale
|
self.spatial_lr_scale = spatial_lr_scale
|
||||||
#print(spatial_lr_scale)
|
|
||||||
fused_point_cloud = torch.tensor(np.asarray(pcd.points)).float().cuda()
|
fused_point_cloud = torch.tensor(np.asarray(pcd.points)).float().cuda()
|
||||||
fused_color = RGB2SH(torch.tensor(np.asarray(pcd.colors)).float().cuda())
|
fused_color = RGB2SH(torch.tensor(np.asarray(pcd.colors)).float().cuda())
|
||||||
features = torch.zeros((fused_color.shape[0], 3, (self.max_sh_degree + 1) ** 2)).float().cuda()
|
features = torch.zeros((fused_color.shape[0], 3, (self.max_sh_degree + 1) ** 2)).float().cuda()
|
||||||
|
Loading…
Reference in New Issue
Block a user